【題目】如圖,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關系?試證明你的結論.
【答案】BD=CE,BD⊥CE;證明見解析.
【解析】
試題分析:根據全等三角形的判定得出△BAD≌△CAE,進而得出∠ABD=∠ACE,求出∠DBC+∠DCB=∠DBC+∠ACE+∠ACB即可得出答案.
試題解析:BD=CE,BD⊥CE;
理由:∵∠BAC=∠DAE=90°,
∴∠BAC+∠CAD=∠DAE+∠CAD,
即∠BAD=∠CAE,
在△BAD和△CAE中,
,
∴△BAD≌△CAE(SAS),
∴BD=CE;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,
∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,
則BD⊥CE.
科目:初中數學 來源: 題型:
【題目】對于二次函數y=﹣ +x﹣4,下列說法正確的是( )
A.當x>0時,y隨x的增大而增大
B.當x=2時,y有最大值﹣3
C.圖象的頂點坐標為(﹣2,﹣7)
D.圖象與x軸有兩個交點
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明用的練習本,一般在甲、乙兩家文具店購買,已知兩家文具店的標價都是每本1元,但甲文具店的優(yōu)惠條件是一次購買10本以上,從第11本起按標價的70%賣;乙文具店的優(yōu)惠條件是全部按八五折優(yōu)惠.
(1)若小明打算買30本,到哪家店購買省錢?
(2)小明現(xiàn)有38元錢,最多可買多少本練習本?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△BEC均為等腰直角三角形,且∠ACB=∠BEC=90°,AC=4 ,點P為線段BE延長線上一點,連接CP以CP為直角邊向下作等腰直角△CPD,線段BE與CD相交于點F
(1)求證: ;
(2)連接BD,請你判斷AC與BD有什么位置關系?并說明理由;
(3)設PE=x,△PBD的面積為S,求S與x之間的函數關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小敏做了一個角平分儀ABCD,其中AB=AD,BC=DC,將儀器上的點A與∠PRQ的頂點R重合,調整AB和AD,使它們分別落在角的兩邊上,過 點A,C 畫一條射線AE,AE就是∠PRQ的平分線。此角平分儀的畫圖原理是:根據儀器結構,可得△ABC≌△ADC,這樣就有∠QAE=∠PAE。則說明這兩個三角形全等的依據是( )
A. SSS B. SAS C. ASA D. AAS
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,邊AB的長為3,點E,F(xiàn)分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BFDE是菱形,且OE=AE,則邊BC的長為( )
A.2
B.3
C.
D.6
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A、E、F、D四點在同一直線上,CE∥BF,CE=BF,∠B=∠C.(1)△ABF與△DCE全等嗎?請說明理由;(2)AB與CD平行嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=1,連接AC,以AC為邊作第一個正方形ACC1D1 , 連接AC1 , 以AC1為邊作第二個正方形AC1C2D2 , 則第10個正方形邊長為( )
A.8
B.16
C.32
D.64
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】重慶大坪時代天街已成為人們周末休閑娛樂的重要場所,時代天街從一樓到二樓有一自動扶梯(如圖1),圖2是側面示意圖.已知自動扶梯AC的坡度為i=1:2.4,AC=13m,BE是二樓樓頂,EF∥MN,B是EF上處在自動扶梯頂端C正上方的一點,且BC⊥EF,在自動扶梯底端A處測得B點仰角為42°.(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
為了吸引顧客,開發(fā)商想在P處放置一個高10m的《瘋狂動物城》的裝飾雕像,并要求雕像最高點與二樓頂層要留出2m距離好放置燈具,請問這個雕像能放得下嗎?如果不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com