【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.
(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AE=6,CE=2 . ①求⊙O的半徑
②求線段CE,BE與劣弧 所圍成的圖形的面積(結(jié)果保留根號和π)

【答案】
(1)解:連結(jié)OC,如圖,

∵AD為⊙O的切線,

∴AD⊥AB,

∴∠BAD=90°,

∵OD∥BC,

∴∠1=∠3,∠2=∠4,

∵OB=OC,

∴∠3=∠4,

∴∠1=∠2,

在△OCD和△OAD中, ,

∴△AOD≌△COD(SAS);

∴∠OCD=∠OAD=90°,

∴OC⊥DE,

∴DE是⊙O的切線


(2)解:①設(shè)半徑為r,則OE=AE﹣OA=6﹣r,OC=r,

在Rt△OCE中,∵OC2+CE2=OE2

∴r2+(2 2=(6﹣r)2,解得r=2,

②∵tan∠COE= = = ,

∴∠COE=60°,

∴S陰影部分=SCOE﹣S扇形BOC

= ×2×2

=2 π


【解析】(1)連結(jié)OC,如圖,先根據(jù)切線的性質(zhì)得∠BAD=90°,再根據(jù)平行線的性質(zhì),由OD∥BC得∠1=∠3,∠2=∠4,加上∠3=∠4,則∠1=∠2,接著證明△AOD≌△COD,得到∠OCD=∠OAD=90°,于是可根據(jù)切線的判定定理得到DE是⊙O的切線;(2)①設(shè)半徑為r,則OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中利用勾股定理得到r2+(2 2=(6﹣r)2 , 解得r;②利用正切函數(shù)求出∠COE=60°,然后根據(jù)扇形面積公式和S陰影部分=SCOE﹣S扇形BOC進行計算即可.
【考點精析】掌握三角形的外接圓與外心和切線的性質(zhì)定理是解答本題的根本,需要知道過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心;切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知E、F分別為正方形ABCD的邊AB,BC的中點,AF與DE交于點M,O為BD的中點,則下列結(jié)論:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM= MF.其中正確結(jié)論的個數(shù)是(
A.5個
B.4個
C.3個
D.2個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料并解決有關(guān)問題:

我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x﹣2|時,可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別為|x+1|與|x﹣2|的零點值).在實數(shù)范圍內(nèi),零點值x=﹣1和,x=2可將全體實數(shù)分成不重復且不遺漏的如下3種情況:

①x<﹣1;②﹣1≤x<2;③x≥2.

從而化簡代數(shù)式|x+1|+|x﹣2|可分以下3種情況:

當x<﹣1時,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;

當﹣1≤x<2時,原式=x+1﹣(x﹣2)=3;

當x≥2時,原式=x+1+x﹣2=2x﹣1.綜上討論,原式=

通過以上閱讀,請你解決以下問題:

(1)化簡代數(shù)式|x+2|+|x﹣4|.

(2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中正確的是(

A. |a|=﹣a,則 a 定是負數(shù)

B. 單項式 x3y2z 的系數(shù)為 1,次數(shù)是 6

C. AP=BP,則點 P 是線段 AB 的中點

D. 若∠AOC=AOB,則射線 OC 是∠AOB 的平分線

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC,∠C=90°,∠A=30°,BDABC的平分線,AD=20,BC的長是  (  )

A. 20 B. 20 C. 30 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場欲購進果汁飲料和碳酸飲料共50箱,兩種飲料每箱進價和售價如下表所示:

飲料

果汁飲料

碳酸飲料

進價(元/箱)

55

36

售價(元/箱)

63

42

設(shè)購進果汁飲料x箱(x為正整數(shù)),且所購進的兩種飲料能全部賣出,獲得的總利潤為w元(注:總利潤=總售價﹣總進價).
(1)求總利潤w關(guān)于x的函數(shù)關(guān)系式;
(2)如果購進兩種飲料的總費用不超過2000元,那么該商場如何進貨才能獲利最多?并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】火車站、機場、郵局等場所都有為旅客提供打包服務的項目.現(xiàn)有一個長、寬、高分別為a、b 、30的箱子(其中a>b),準備采用如圖①、②的兩種打包方式,所用打包帶的總長(不計接頭處的長)分別記為

(1)圖①中打包帶的總長=________.

圖②中打包帶的總長=________.

(2)試判斷哪一種打包方式更節(jié)省材料,并說明理由.(提醒:先判斷再說理,說理過程即為比較 的大。

(3)b=40a為正整數(shù),在數(shù)軸上表示數(shù)的兩點之間有且只有19個整數(shù)點,求a 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合題。
(1)計算:|﹣2|+2cos60°﹣( 0
(2)解不等式: ﹣x>1,并將解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖ABC為等邊三角形,AECD,AD,BE相交于點P,BQADQ,PQ3PE1

1求證BEAD;

2AD的長

查看答案和解析>>

同步練習冊答案