【題目】某商場欲購進果汁飲料和碳酸飲料共50箱,兩種飲料每箱進價和售價如下表所示:

飲料

果汁飲料

碳酸飲料

進價(元/箱)

55

36

售價(元/箱)

63

42

設購進果汁飲料x箱(x為正整數(shù)),且所購進的兩種飲料能全部賣出,獲得的總利潤為w元(注:總利潤=總售價﹣總進價).
(1)求總利潤w關于x的函數(shù)關系式;
(2)如果購進兩種飲料的總費用不超過2000元,那么該商場如何進貨才能獲利最多?并求出最大利潤.

【答案】
(1)解:由題意可得,

w=(63﹣55)x+(42﹣36)(50﹣x)=2x+300,

即總利潤w關于x的函數(shù)關系式是w=2x+300


(2)解:由題意可得,

55x+36(50﹣x)≤2000,

解得,x≤

∴當x=10時,w取得最大值,此時w=2×10+300=320,

即該商場果汁飲料10箱,碳酸飲料40箱,獲得利潤最多,最大利潤為320元


【解析】(1)根據題意可以得到w關于x的函數(shù)關系式,本題得以解決;(2)根據題意可以得到相應的不等式,從而可以求得w的最大值,本題得以解決.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ADBC,ECD的中點,連接AE、BE,BEAE,延長AEBC的延長線于點F.

求證:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某企業(yè)接到一批粽子生產任務,按要求在15天內完成,約定這批粽子的出廠價為每只6元,為按時完成任務,該企業(yè)招收了新工人,設新工人李明第x天生產的粽子數(shù)量為y只,y與x滿足下列關系式: y=
(1)李明第幾天生產的粽子數(shù)量為420只?
(2)如圖,設第x天每只粽子的成本是p元,p與x之間的關系可用圖中的函數(shù)圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數(shù)表達式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價﹣成本)
(3)設(2)小題中第m天利潤達到最大值,若要使第(m+1)天的利潤比第m天的利潤至少多48元,則第(m+1)天每只粽子至少應提價幾元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C、D是線段AB上兩點,已知AC:CD:DB=1:2:3,M、N分別為AC、DB的中點,且AB=12cm,

(1)求線段CD的長;

(2)求線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過點A的切線交于點D,連接DC并延長交AB的延長線于點E.
(1)判斷DE與⊙O的位置關系,并證明你的結論;
(2)若AE=6,CE=2 . ①求⊙O的半徑
②求線段CE,BE與劣弧 所圍成的圖形的面積(結果保留根號和π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知O為正方形ABCD的中心,M為射線OD上一動點(M與點O,D不重合),以線段AM為一邊作正方形AMEF,連接FD.
(1)當點M在線段OD上時(如圖1),線段BM與DF有怎樣的數(shù)量及位置關系?請說明理由;
(2)當點M在線段OD的延長線上時(如圖2),(1)中的結論是否仍然成立?請結合圖2說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+bx+3交y軸于點A,交x軸正半軸于點C(3,0),交x軸負半軸于點B(﹣1,0),∠ACB=45°.

(1)求此拋物線的解析式;
(2)點D為線段AC上一點,且AD=2CD,過點D作DE∥y軸,交拋物線一點E,點P為x軸上方拋物線的一點,設點P的橫坐標為t,△PDE的面積為s,求s與t之間的函數(shù)關系式,并直接寫出t的范圍;
(3)在(2)的條件下,過點P作PF∥DE交直線AC于點F,是否存在點P,使以點P、F、E、D為頂點的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三個頂點的坐標為A(-2,1),B(-4,-3),C(0,-1).

(1)若點A平移后的對稱點為A′(2,4),請在坐標系中畫出△ABC作同樣的平移后得到的△A'B′C,并寫出另兩點B′,C′的對稱點的坐標;

(2)△ABC經過怎樣的平移得到△A′B′C′?;

(3)△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明作出了邊長為2的第1個正A1B1C1 , 算出了正A1B1C1的面積. 然后分別取A1B1C1的三邊中點A2、B2、C2 , 作出了第2個正A2B2C2 , 算出了正A2B2C2的面積. 用同樣的方法,作出了第3個正A3B3C3 , 算出了正A3B3C3的面積……,由此可得,第2個正A2B2C2的面積是_______,n個正AnBnCn的面積是______

查看答案和解析>>

同步練習冊答案