某批發(fā)商以40元/千克的成本價購入了某產品700千克,據市場預測,該產品的
銷售價y(元/千克)與保存時間x(天)的函數(shù)關系為y=50+2x,但保存這批產品平均每天
將損耗15千克,且最多保存15天.另外,批發(fā)商每天保存該批產品的費用為50元.
(1)若批發(fā)商在保存該產品5天時一次性賣出,則可獲利 元.
(2)如果批發(fā)商希望通過這批產品賣出獲利10000元,則批發(fā)商應在保存該產品多少
天時一次性賣出?
科目:初中數(shù)學 來源: 題型:
圖①為一種平板電腦保護套的支架效果圖,AM固定于平板電腦背面,與可活動的MB、CB部分組成支架.平板電腦的下端N保持在保護套CB上.不考慮拐角處的弧度及平板電腦和保護套的厚度,繪制成圖②.其中AN表示平板電腦,M為AN上的定點,AN=CB=20 cm,AM=8 cm,MB=MN.我們把∠ANB叫做傾斜角.
(1)當傾斜角為45°時,求CN的長;
(2)按設計要求,傾斜角能小于30°嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在矩形ABCD中,M、N分別AD、BC的中點,P、Q分別BM、DN
的中點.
(1)求證:四邊形MPNQ是菱形;
(2)若AB=2,BC=4,求四邊形MPNQ的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
利用表格中的數(shù)據,可求出+(4.123)2- 的近似值是(結果保留整數(shù)).
a | a2 |
|
|
17 | 289 | 4.123 | 13.038 |
18 | 324 | 4.243 | 13.416 |
19 | 361 | 4.359 | 13.784 |
A.3 | B.4 |
C.5 | D.6 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
反比例函數(shù)y= (k為常數(shù),k≠0)的圖象是雙曲線.當k>0時,雙曲線兩個分支分別在
一、三象限,在每一個象限內,y隨x的增大而減。ê喎Q增減性);反比例函數(shù)的圖象關于
原點對稱(簡稱對稱性).
這些我們熟悉的性質,可以通過說理得到嗎?
【嘗試說理】
我們首先對反比例函數(shù)y=(k>0)的增減性來進行說理.
如圖,當x>0時.
在函數(shù)圖象上任意取兩點A、B,設A(x1,),B(x2,),
且0<x1< x2.
下面只需要比較和的大。
—= .
∵0<x1< x2,∴x1-x2<0,x1 x2>0,且 k>0.
∴<0.即< .
這說明:x1< x2時,>.也就是:自變量值增大了,對應的函數(shù)值反而變小了.
即:當x>0時,y隨x的增大而減。
同理,當x<0時,y隨x的增大而減。
(1)試說明:反比例函數(shù)y= (k>0)的圖象關于原點對稱.
【運用推廣】
(2)分別寫出二次函數(shù)y=ax2 (a>0,a為常數(shù))的對稱性和增減性,并進行說理.
對稱性: ;
增減性: .
說理:
(3)對于二次函數(shù)y=ax2+bx+c (a>0,a,b,c為常數(shù)),請你從增減性的角度,簡要解釋為何當x=— 時函數(shù)取得最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
某市抽樣調查了全市40個噪聲測量點在某時刻的噪聲聲級(單位:dB),將調查的數(shù)
據進行處理(設所測數(shù)據是正整數(shù)),得頻數(shù)分布表如下:
組 別 | 噪聲聲級分組 | 頻 數(shù) | 頻 率 |
1 | 44.5——59.5 | 4 | 0.1 |
2 | 59.5——74.5 | 8 | 0.2 |
3 | 74.5——89.5 | 10 | 0.25 |
4 | 89.5——104.5 | b | c |
5 | 104.5——119.5 | 6 | 0.15 |
合 計 | 40 | 1.00 |
則第四小組的頻率c =_________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com