如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,點(diǎn)B的坐標(biāo)為(3,0),OA=2,∠AOB=60°.
(1)求點(diǎn)A的坐標(biāo);
(2)若直線AB交y軸于點(diǎn)C,求△AOC的面積.

【答案】分析:(1)利用∠AOB為60°構(gòu)造直角三角形,利用三角函數(shù)求點(diǎn)A的坐標(biāo);
(2)設(shè)出直線AB的解析式,求得與y軸的交點(diǎn),面積=CO×點(diǎn)A的橫坐標(biāo)÷2.
解答:解:(1)過(guò)點(diǎn)A作AM⊥x軸,垂足為M.
則OM=OAcos60°=,
AM=OAsin60°=2×,
∴點(diǎn)A的坐標(biāo)為(1,).

(2)設(shè)直線AB的解析式為y=kx+b.
則有
解得
∴直線AB的解析式為y=-x+
令x=0,得y=,
∴OC=
∴S△AOC=×OC×OM=××1=
點(diǎn)評(píng):考查點(diǎn)的坐標(biāo)的意義及求法、解直角三角形及三角形面積的求法和一次函數(shù)解析式的確定.
(1)求點(diǎn)的坐標(biāo)往往轉(zhuǎn)化為求線段的長(zhǎng)度,一般情況下過(guò)點(diǎn)作坐標(biāo)軸的垂線,構(gòu)造直角三角形.
(2)在坐標(biāo)系內(nèi)求三角形的面積通常以在坐標(biāo)軸上的邊為底.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案