【題目】如圖,我市云臺山景區(qū)內(nèi)一條筆直的公路a經(jīng)過三個景點A、B、C,現(xiàn)在市政府決定開發(fā)風景優(yōu)美的景點D.經(jīng)測量景點D位于景點A的北偏東30方向12km處,位于景點B的正北方向,還位于景點C的北偏西75方向上.已知AB=km.
(1)現(xiàn)準備由景點D向公路a修建一條距離最短的公路,不考慮其他因素,求出這條公路的長;
(2)求出景點B與景點C之間的距離(結(jié)果保留根號).
【答案】(1)6km;(2).
【解析】試題分析:(1) 過點D作DE⊥AC于點E,過點A作AF⊥DB,交DB的延長線于點F,求DE的問題就可以轉(zhuǎn)化為求∠DBE的度數(shù)或三角函數(shù)值的問題;(2)Rt△DCE中根據(jù)三角函數(shù)就可以求出CD的長.
試題解析: (1)如圖,過點D作DE⊥AC于點E,
過點A作AF⊥DB,交DB的延長線于點F,
在Rt△DAF中,∠ADF=30°,
∴AF=AD=×12=6,
∴DF===6,
在Rt△ABF中BF===2,
∴BD=DFBF=6-2=4,
sin∠ABF==,
在Rt△DBE中,sin∠DBE=,
∵∠ABF=∠DBE,
∴sin∠DBE=,
∴DE=BDsin∠DBE=×4=6(km),
∴景點D向公路a修建的這條公路的長約是6km;
(2)由題意可知∠CDB=75°,
由(1)可知sin∠DBE=,所以∠DBE=60°,
∴∠DCB=180°75°60°=45°,
在Rt△DCE中,CE=DE=6 (km),
在Rt△DBE中, ∠BDE=75°-45°=30°,
∴BE=BD= (km),
∴BC=6+ (km)
∴景點B與景點C之間的距離為6+km.
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞點A按逆時針方向旋轉(zhuǎn)θ度,并使各邊長變?yōu)樵瓉淼?/span>n倍,得△AB′C′ ,如圖①所示,∠BAB′ =θ, ,我們將這種變換記為[θ,n] .
(1)如圖①,對△ABC作變換[60°,]得到△AB′C′ ,則:= ;直線BC與直線B′C′所夾的銳角為 度;
(2)如圖②,△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值;
(3)如圖③,△ABC中,AB=AC,∠BAC=36°,BC=1,對△ABC作變換[θ,n]得到△AB′C′,使點B、C、B′在同一直線上,且四邊形ABB′C′為平行四邊形,求θ和n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】反比例函數(shù)y=的圖象如圖所示,以下結(jié)論:
①常數(shù)m<﹣1;
②在每個象限內(nèi),y隨x的增大而增大;
③若點A(﹣1,h),B(2,k)在圖象上,則h<k;
④若點P(x,y)在上,則點P′(﹣x,﹣y)也在圖象.
其中正確結(jié)論的個數(shù)是( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(-4,2),B(-2,6),C(0,4)是直角坐標系中的三點.
(1)把△ABC向右平移4個單位再向下平移1個單位,得到△A1B1C1,畫出平移后的圖形,并寫出點A的對應點A1的坐標;
(2)以原點O為位似中心,將△ABC縮小為原來的一半,得到△A2B2C2,請在所給的坐標系中作出所有滿足條件的圖形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)y=(m為常數(shù))的圖象在一,三象限.
(1)求m的取值范圍;
(2)如圖,若該反比例函數(shù)的圖象經(jīng)過ABOD的頂點D,點A、B的坐標分別為(0,4),(﹣3,0).
①求出函數(shù)解析式;
②設點P是該反比例函數(shù)圖象上的一點,若OD=OP,則P點的坐標為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四人參加射擊訓練,每人各射擊20次,他們射擊成績的平均數(shù)都是9.1環(huán),各自的方差見如下表格:
甲 | 乙 | 丙 | 丁 | |
方差 | 0.293 | 0.375 | 0.362 | 0.398 |
由上可知射擊成績最穩(wěn)定的是( )
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)為舉辦校園文化藝術(shù)節(jié),甲、乙兩班準備給合唱同學購買演出服裝(一人一套),兩班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供貨商給出的演出服裝的價格表:
如果兩班單獨給每位同學購買一套服裝,那么一共應付5020元.
(1)甲、乙兩班聯(lián)合起來給每位同學購買一套服裝,比單獨購買可以節(jié)省多少錢?
(2)甲、乙兩班各有多少名同學?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有四張背面相同的紙牌A、B、C、D,其正面分別畫有四個不同的幾何圖形(如圖).小華將這4張紙牌背面朝上洗勻后任意摸出兩張.
(1)用樹狀圖(或列表法)表示所摸的兩張牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);
(2)求摸出兩張牌的牌面圖形一定能組合成軸對稱圖形的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com