【題目】為營造濃厚的創(chuàng)建全國文明城市氛圍,東營市某中學(xué)委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.
(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?
(2)若該中學(xué)要購進(jìn)“最美東營人”和“最美志愿者”兩款文化衫共90件,總費(fèi)用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,那么該中學(xué)有哪幾種購買方案?
【答案】(1)“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三種方案,具體見解析.
【解析】
(1)設(shè)“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,根據(jù)若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元建立方程組求出其解即可;
(2)設(shè)購買“最美東營人”文化衫m件,根據(jù)總費(fèi)用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,列出不等式組,然后求m的正整數(shù)解.
(1)設(shè)“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,
由題意,得
,
解得:
.
答:“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;
(2)設(shè)購買“最美東營人”文化衫m件,則購買“最美志愿者”文化衫(90-m)件,
由題意,得,
解得:41<m<45.
∵m是整數(shù),
∴m=42,43,44.
則90-m=48,47,46.
答:方案一:購買“最美東營人”文化衫42件,“最美志愿者”文化衫48件;
方案二:購買“最美東營人”文化衫43件,“最美志愿者”文化衫47件;
方案三:購買“最美東營人”文化衫44件,“最美志愿者”文化衫46件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上的一點(diǎn),CF切半圓O于點(diǎn)C,BD⊥CF于為點(diǎn)D,BD與半圓O交于點(diǎn)E.
(1)求證:BC平分∠ABD.
(2)若DC=8,BE=4,求圓的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰Rt△ABC,點(diǎn)D為斜邊AB上的中點(diǎn),點(diǎn)E在線段BD上,連結(jié)CD,CE,作AH⊥CE,垂足為H,交CD于點(diǎn)G,AH的延長線交BC于點(diǎn)F.
(1)求證:△ADG≌△CDE.
(2)若點(diǎn)H恰好為CE的中點(diǎn),求證:∠CGF=∠CFG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在中,,,平分.
求證:.
小明為解決上面的問題作了如下思考:
作關(guān)于直線的對(duì)稱圖形,∵平分,∴點(diǎn)落在上,且,.因此,要證的問題轉(zhuǎn)化為只要證出即可.
請(qǐng)根據(jù)小明的思考,寫出該問題完整的證明過程.
(2)參照(1)中小明的思考方法,解答下列問題:
如圖3,在四邊形中,平分,,,,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D在AB邊上,DE∥BC,與邊AC交于點(diǎn)E,連結(jié)BE.記△ADE,△BCE的面積分別為S1,S2,( 。
A. 若2AD>AB,則3S1>2S2 B. 若2AD>AB,則3S1<2S2
C. 若2AD<AB,則3S1>2S2 D. 若2AD<AB,則3S1<2S2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點(diǎn)D,PE⊥OB于點(diǎn)E.如果點(diǎn)M是OP的中點(diǎn),則DM的長是( 。
A. 2 B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在y軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com