【題目】如圖,已知一次函數(shù)的圖像與軸交于點(diǎn),一次函數(shù)的圖像過點(diǎn),且與軸及的圖像分別交于點(diǎn)、,點(diǎn)坐標(biāo)為.
(1)求n的值及一次函數(shù)的解析式.
(2)求四邊形的面積.
【答案】(1) n =;y=2x+4;(2)S=
【解析】
(1)根據(jù)點(diǎn)D在函數(shù)y=-x+2的圖象上,即可求出n的值;再利用待定系數(shù)法求出k,b的值;
(2)用三角形OBC的面積減去三角形ABD的面積即可.
(1)∵點(diǎn)D(-,n)在直線y=-x+2上,∴n=+2=.
∵一次函數(shù)經(jīng)過點(diǎn)B(0,4)、點(diǎn)D(-),∴,解得:.故一次函數(shù)的解析式為:y=2x+4;
(2)直線y=2x+4與x軸交于點(diǎn)C,∴令y=0,得:2x+4=0,解得:x=-2,∴OC=2.
∵函數(shù)y=-x+2的圖象與y軸交于點(diǎn)A,∴令x=0,得:y=2,∴OA=2.
∵B(0,4),∴OB=4,∴AB=2.
S△BOC=×2×4=4,S△BAD=×2×=,∴S四邊形AOCD=S△BOC﹣S△BAD=4﹣=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一次函數(shù)的圖象經(jīng)過點(diǎn).
(1)求m的值;
(2)畫出此函數(shù)的圖象;
(3)平移此函數(shù)的圖象,使得它與兩坐標(biāo)軸所圍成的圖形的面積為4,請(qǐng)直接寫出此時(shí)圖象所對(duì)應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩條直線都與第三條直線相交,∠1和∠2是內(nèi)錯(cuò)角,∠3和∠2是鄰補(bǔ)角.
(1)根據(jù)上述條件,畫出符合題意的圖形;
(2)若∠1∶∠2∶∠3=1∶2∶3,求∠1,∠2,∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在正方形ABCD的對(duì)角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點(diǎn)M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為( )
A. a2
B. a2
C. a2
D. a2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點(diǎn),連接AE、BE,BE⊥AE,延長AE交BC的延長線于點(diǎn)F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中直線y=x+2與反比例函數(shù) y=﹣ 的圖象有唯一公共點(diǎn),若直線y=x+m與反比例函數(shù)y=﹣ 的圖象有2個(gè)公共點(diǎn),則m的取值范圍是( )
A.m>2
B.﹣2<m<2
C.m<﹣2
D.m>2或m<﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4 個(gè)小長方形,然后按圖2的形狀拼成一個(gè)正方形.
(1)圖2中陰影部分的面積為 ;
(2)觀察圖2,請(qǐng)你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;
(3)若x+y=-6,xy=2.75,求x-y的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A( ,1)在反比例函數(shù)y= 的圖象上.
(1)求反比例函數(shù)y= 的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP= S△AOB , 求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,P點(diǎn)從點(diǎn)A開始以2厘米/秒的速度沿A→B→C的方向移動(dòng),點(diǎn)Q從點(diǎn)C開始以1厘米/秒的速度沿C→A→B的方向移動(dòng),在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間,那么:
(1)如圖1,若P在線段AB上運(yùn)動(dòng),Q在線段CA上運(yùn)動(dòng),試求出t為何值時(shí),QA=AP
(2)如圖2,點(diǎn)Q在CA上運(yùn)動(dòng),試求出t為何值時(shí),三角形QAB的面積等于三角形ABC面積的;
(3)如圖3,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),試求當(dāng)t為何值時(shí),線段AQ的長度等于線段BP的長的
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com