【題目】如圖,已知一次函數(shù)的圖像與軸交于點,一次函數(shù)的圖像過點,且與軸及的圖像分別交于點、,點坐標為.
(1)求n的值及一次函數(shù)的解析式.
(2)求四邊形的面積.
【答案】(1) n =;y=2x+4;(2)S=
【解析】
(1)根據(jù)點D在函數(shù)y=-x+2的圖象上,即可求出n的值;再利用待定系數(shù)法求出k,b的值;
(2)用三角形OBC的面積減去三角形ABD的面積即可.
(1)∵點D(-,n)在直線y=-x+2上,∴n=+2=.
∵一次函數(shù)經(jīng)過點B(0,4)、點D(-),∴,解得:.故一次函數(shù)的解析式為:y=2x+4;
(2)直線y=2x+4與x軸交于點C,∴令y=0,得:2x+4=0,解得:x=-2,∴OC=2.
∵函數(shù)y=-x+2的圖象與y軸交于點A,∴令x=0,得:y=2,∴OA=2.
∵B(0,4),∴OB=4,∴AB=2.
S△BOC=×2×4=4,S△BAD=×2×=,∴S四邊形AOCD=S△BOC﹣S△BAD=4﹣=.
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一次函數(shù)的圖象經(jīng)過點.
(1)求m的值;
(2)畫出此函數(shù)的圖象;
(3)平移此函數(shù)的圖象,使得它與兩坐標軸所圍成的圖形的面積為4,請直接寫出此時圖象所對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩條直線都與第三條直線相交,∠1和∠2是內(nèi)錯角,∠3和∠2是鄰補角.
(1)根據(jù)上述條件,畫出符合題意的圖形;
(2)若∠1∶∠2∶∠3=1∶2∶3,求∠1,∠2,∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在正方形ABCD的對角線AC上,且EC=2AE,直角三角形FEG的兩直角邊EF、EG分別交BC、DC于點M、N.若正方形ABCD的邊長為a,則重疊部分四邊形EMCN的面積為( )
A. a2
B. a2
C. a2
D. a2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.
求證:(1)FC=AD;
(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中直線y=x+2與反比例函數(shù) y=﹣ 的圖象有唯一公共點,若直線y=x+m與反比例函數(shù)y=﹣ 的圖象有2個公共點,則m的取值范圍是( )
A.m>2
B.﹣2<m<2
C.m<﹣2
D.m>2或m<﹣2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個長為2m、寬為2n的長方形,沿圖中虛線用剪刀平均分成4 個小長方形,然后按圖2的形狀拼成一個正方形.
(1)圖2中陰影部分的面積為 ;
(2)觀察圖2,請你寫出式子(m+n)2,(m-n)2,mn之間的等量關(guān)系: ;
(3)若x+y=-6,xy=2.75,求x-y的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A( ,1)在反比例函數(shù)y= 的圖象上.
(1)求反比例函數(shù)y= 的表達式;
(2)在x軸的負半軸上存在一點P,使得S△AOP= S△AOB , 求點P的坐標;
(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,P點從點A開始以2厘米/秒的速度沿A→B→C的方向移動,點Q從點C開始以1厘米/秒的速度沿C→A→B的方向移動,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同時出發(fā),用t(秒)表示移動時間,那么:
(1)如圖1,若P在線段AB上運動,Q在線段CA上運動,試求出t為何值時,QA=AP
(2)如圖2,點Q在CA上運動,試求出t為何值時,三角形QAB的面積等于三角形ABC面積的;
(3)如圖3,當P點到達C點時,P、Q兩點都停止運動,試求當t為何值時,線段AQ的長度等于線段BP的長的
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com