我市某校舉辦“行為規(guī)范在身邊”演講比賽中,7位評(píng)委給其中一名選手的評(píng)分(單位:分)分別為:9.25,9.82,9.45,9.63,9.57,9.35,9.78.則這組數(shù)據(jù)的中位數(shù)和平均數(shù)分別是(  )

 

A.

9.63和9.54

B.

9.57和9.55

C.

9.63和9.56

D.

9.57和9.57

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


菱形ABCD中,若對(duì)角線長(zhǎng)AC=8cm,BD=6cm,則邊長(zhǎng)AB=   cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)C的坐標(biāo)為(﹣3,4),點(diǎn)A在x軸的正半軸上,O為坐標(biāo)原點(diǎn),連接OB,拋物線y=ax2+bx+c經(jīng)過(guò)C、O、A三點(diǎn).

(1)直接寫出這條拋物線的解析式;

(2)如圖1,對(duì)于所求拋物線對(duì)稱軸上的一點(diǎn)E,設(shè)△EBO的面積為S1,菱形ABCD的面積為S2,當(dāng)S1S2時(shí),求點(diǎn)E的縱坐標(biāo)n的取值范圍;

(3)如圖2,D(0,﹣)為y軸上一點(diǎn),連接AD,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以個(gè)單位/秒的速度沿OB方向運(yùn)動(dòng),1秒后,動(dòng)點(diǎn)Q從O出發(fā),以2個(gè)單位/秒的速度沿折線O﹣A﹣B方向運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒(0<t<6),是否存在實(shí)數(shù)t,使得以P、Q、B為頂點(diǎn)的三角形與△ADO相似?若存在,求出相應(yīng)的t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖4,AD是△ABC的高,AE是△ABC的外接圓⊙O的直徑,且AB=,AC=5,AD=4,則⊙O的直徑AE=             

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖7,正方形ABCD的對(duì)角線相交于點(diǎn)O,∠CAB的平分線分別交BD、BCEF,作BHAF于點(diǎn)H,分別交AC、CD于點(diǎn)G、P,連結(jié)GEGF
(1)求證:△OAE ≌△OBG

(2)試問(wèn):四邊形BFGE是否為菱形?若是,請(qǐng)證明;若不是,請(qǐng)說(shuō)明理由.

(3)試求:的值(結(jié)果保留根號(hào)).

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在△ABC中,AC=BC,有一動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→C→B→A勻速運(yùn)動(dòng).則CP的長(zhǎng)度s與時(shí)間t之間的函數(shù)關(guān)系用圖象描述大致是( 。

 

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在直角梯形ABCD中,∠ABC=90°,上底AD為,以對(duì)角線BD為直徑的⊙O與CD切于點(diǎn)D,與BC交于點(diǎn)E,且∠ABD為30°.則圖中陰影部分的面積為 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


為了解某小區(qū)小孩暑假的學(xué)習(xí)情況,王老師隨機(jī)調(diào)查了該小區(qū)8個(gè)小孩某天的學(xué)習(xí)時(shí)間,結(jié)果如下(單位:小時(shí)):1.5 ,1.5 ,3 ,4,2 ,5 ,2.5 ,4.5.關(guān)于這組數(shù)據(jù),下列結(jié)論錯(cuò)誤的是

    A. 極差是3.5          B. 眾數(shù)是1.5          C. 中位數(shù)是3         D.平均數(shù)是3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)G,點(diǎn)F是CD上一點(diǎn),且滿足=,連接AF并延長(zhǎng)交⊙O于點(diǎn)E,連接AD、DE,若CF=2,AF=3.

(1)求證:△ADF∽△AED;

(2)求FG的長(zhǎng);

(3)求證:tan∠E=

查看答案和解析>>

同步練習(xí)冊(cè)答案