【題目】如圖,四邊形ABCD∽四邊形EFGH,連接相應的對角線AC,EG.
(1)求證△ABC∽△EFG;
(2)若 = ,直接寫出四邊形ABCD與四邊形EFGH的面積比為 .
科目:初中數(shù)學 來源: 題型:
【題目】方程:2x2=5x+3的根是( 。
A.x1=-6,x2=1
B.x1=3,x2=-1
C.x1=1,x2=
D.x1= - ,x2=3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠ABC=120°,BD平分∠ABC,∠DAC=60°,若AB=2,BC=3,則BD的長是( 。
A. 5 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,過點D作對DE⊥AB于點E,點F在邊CD上,CF=AE,連結(jié)AF,BF.
(1)求證:四邊形BFDE是矩形.
(2)若CF=6,BF=8,DF=10,求證:AF是∠DAB的角平分線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數(shù),記作y=f(x).在函數(shù)y=f(x)中,當自變量x=a時,相應的函數(shù)值y可以表示為f(a).
例如:函數(shù)f(x)=x2﹣2x﹣3,當x=4時,f(4)=42﹣2×4﹣3=5在平面直角坐標系xOy中,對于函數(shù)的零點給出如下定義:
如果函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)對應的圖象是一條連續(xù)不斷的曲線,并且f(a).f(b)<0,那么函數(shù)y=f(x)在a≤x≤b的范圍內(nèi)有零點,即存在c(a≤c≤b),使f(c)=0,則c叫做這個函數(shù)的零點,c也是方程f(x)=0在a≤x≤b范圍內(nèi)的根.
例如:二次函數(shù)f(x)=x2﹣2x﹣3的圖象如圖1所示.
觀察可知:f(﹣2)>0,f(1)<0,則f(﹣2).f(1)<0.所以函數(shù)f(x)=x2﹣2x﹣3在﹣2≤x≤1范圍內(nèi)有零點.由于f(﹣1)=0,所以,﹣1是f(x)=x2﹣2x﹣3的零點,﹣1也是方程x2﹣2x﹣3=0的根.
(1)觀察函數(shù)y1=f(x)的圖象2,回答下列問題:
①f(a)f(b) 0(“<”“>”或“=”)
②在a≤x≤b范圍內(nèi)y1=f(x)的零點的個數(shù)是 .
(2)已知函數(shù)y2=f(x)=﹣ 的零點為x1 , x2 , 且x1<1<x2 .
①求零點為x1 , x2(用a表示);
②在平面直角坐標xOy中,在x軸上A,B兩點表示的數(shù)是零點x1 , x2 , 點 P為線段AB上的一個動點(P點與A、B兩點不重合),在x軸上方作等邊△APM和等邊△BPN,記線段MN的中點為Q,若a是整數(shù),求拋物線y2的表達式并直接寫出線段PQ長的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】里約奧運會后,受到奧運健兒的感召,群眾參與體育運動的熱度不減,全民健身再次成為了一種時尚,球場上也出現(xiàn)了更多年輕人的身影.請問下面四幅球類的平面圖案中,是中心對稱圖形的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】表是二次函數(shù)y=ax2+bx+c的部分x,y的對應值:
x | … | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | … | |||
y | … | m | ﹣1 | ﹣2 | ﹣1 | 2 | … |
(1)二次函數(shù)圖象的開口向 , 頂點坐標是 , m的值為;
(2)當x>0時,y的取值范圍是;
(3)當拋物線y=ax2+bx+c的頂點在直線y=x+n的下方時,n的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點O為位似中心放大為原來的 倍,得到矩形A1OC1B1 , 再將矩形A1OC1B1以原點O為位似中心放大 倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對角線交點的坐標為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com