在梯形ABCD中,AD∥BC,∠D=90°,以AB為直徑作⊙O.
(1)如圖①,⊙O與DC相切于點(diǎn)E,試說(shuō)明:∠BAE=∠DAE;
(2)如圖②,⊙O與DC交于點(diǎn)E、F.
①圖中哪一個(gè)角與∠BAE相等?為什么?
②試探究線段DF與CE的數(shù)量關(guān)系,并說(shuō)明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,正方形ABCD的頂點(diǎn)B,C在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限的圖象經(jīng)過(guò)頂點(diǎn)A(m,2)和CD邊上的點(diǎn)E(n,),過(guò)點(diǎn)E的直線交x軸于點(diǎn)F,交y軸于點(diǎn)G(0,﹣2),則點(diǎn)F的坐標(biāo)是( )
A.() B. ( ,0 )
C. ( ,0 ) D. ( ,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
操作與證明:如圖①,把一個(gè)含45°角的直角三角板ECF和一個(gè)
正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)
C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF的
中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.
(1)連接AE,求證:△AEF是等腰三角形;
猜想與發(fā)現(xiàn):
(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.
結(jié)論1:DM、MN的數(shù)量關(guān)系是_______;
結(jié)論2:DIM、MN的位置關(guān)系是_______;
拓展與探究:
(3)如圖②,將圖①中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
中學(xué)生騎電動(dòng)車上學(xué)的現(xiàn)象越來(lái)越受到社會(huì)的關(guān)注,某市記者隨機(jī)調(diào)查了一些家長(zhǎng)對(duì)這種現(xiàn)象的態(tài)度(A:無(wú)所謂;B:反對(duì);C:贊成),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)在圖①中,C部分所占扇形的圓心角度數(shù)為_(kāi)______°;
(2)將圖②補(bǔ)充完整;
(3)根據(jù)抽樣調(diào)查結(jié)果,請(qǐng)你估計(jì)該市50 000名中學(xué)生家長(zhǎng)中有多少名家長(zhǎng)持贊成態(tài)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
據(jù)統(tǒng)計(jì),2015年5月1日黃金周的第一天,泰山門票收益達(dá)到24萬(wàn)元,這個(gè)數(shù)據(jù)用科學(xué)計(jì)數(shù)法表示為( )萬(wàn)元。
A. B. C. D.2.4×10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在一個(gè)不透明的盒子中裝有8個(gè)白球,若干個(gè)黃球,它們除顏色不同外,其余均相同.若從中隨機(jī)摸出一個(gè)球,它是白球的概率為,則黃球的個(gè)數(shù)為( )
A.4 B. 6 C.12 D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在Rt△ABC中,∠C=90°,點(diǎn)P為AC邊上的一點(diǎn),將線段AP繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)(點(diǎn)P對(duì)應(yīng)點(diǎn)P′),當(dāng)AP旋轉(zhuǎn)至AP′⊥AB時(shí),點(diǎn)B、P、P′恰好在同一直線上,此時(shí)作P′E⊥AC于點(diǎn)E.
(1)求證:∠CBP=∠ABP;
(2)求證:AE=CP;
(3)當(dāng),BP′=5時(shí),求線段AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com