【題目】已知:在中,,,將如圖擺放,使得的兩條邊分別經(jīng)過(guò)點(diǎn)和點(diǎn)

1)當(dāng)將如圖1擺放時(shí),則_________度.

2)當(dāng)將如圖2擺放時(shí),請(qǐng)求出的度數(shù),并說(shuō)明理由.

3)能否將擺放到某個(gè)位置時(shí),使得、同時(shí)平分?直接寫(xiě)出結(jié)論_______(填不能

【答案】1240;(2理由見(jiàn)解析;(3)不能

【解析】

1)要求∠ABD+ACD的度數(shù),只要求出∠ABC+CBD+ACB+BCD,利用三角形內(nèi)角和定理得出∠ABC+ACB=180°-A=180°-40°=140°;根據(jù)三角形內(nèi)角和定理,∠CBD+BCD=E+F=100°,得出∠ABD+ACD=ABC+CBD+ACB+BCD=140°+100°=240°;

2)要求∠ABD+ACD的度數(shù),只要求出∠ABC+ACB-(∠BCD+CBD)的度數(shù).根據(jù)三角形內(nèi)角和定理,∠CBD+BCD=E+F=100°;根據(jù)三角形內(nèi)角和定理得,∠ABC+ACB=180°-A=140°,得出∠ABD+ACD=ABC+ACB-(∠BCD+CBD=140°-100°=40°;

3)不能.假設(shè)能將DEF擺放到某個(gè)位置時(shí),使得BD、CD同時(shí)平分∠ABC和∠ACB.則∠CBD+BCD=ABD+ACD=100°,那么∠ABC+ACB=200°,與三角形內(nèi)角和定理矛盾,所以不能.

(1)ABC,A+ABC+ACB=180°,A=40°

∴∠ABC+ACB=180°A=180°40°=140°

BCD,D+BCD+CBD=180°

∴∠BCD+CBD=180°D

DEF,D+E+F=180°

∴∠E+F=180°D

∴∠CBD+BCD=E+F=100°

∴∠ABD+ACD=ABC+CBD+ACB+BCD=140°+100°=240°.

(2)ABD+ACD=40°

理由如下:

∵∠E+F=100°

∴∠D=180°(E+F)=80°

∴∠ABD+ACD=180°ADBCDCB=180°40°(180°80°)=40°;

(3)不能.假設(shè)能將DEF擺放到某個(gè)位置時(shí),使得BD、CD同時(shí)平分∠ABC和∠ACB.則∠CBD+BCD=ABD+ACD=100°,那么∠ABC+ACB=200°,與三角形內(nèi)角和定理矛盾,所以不能.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線l1 :y=-3x+3x軸交于點(diǎn)D,直線l2經(jīng)過(guò)A(4,0)、B(3,)兩點(diǎn),直線l1 與直線l2交于點(diǎn)C.

(1)求直線l2的解析式和點(diǎn)C的坐標(biāo);

(2) y軸上是否存在一點(diǎn)P,使得四邊形PDBC的周長(zhǎng)最。咳舸嬖,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點(diǎn),與y軸交于C點(diǎn),過(guò)點(diǎn)A作AH⊥y軸,垂足為H,OH=3,tan∠AOH=,點(diǎn)B的坐標(biāo)為(m,-2).

(1)求△AHO的周長(zhǎng);

(2)求該反比例函數(shù)和一次函數(shù)的解析式.

【答案】(1)△AHO的周長(zhǎng)為12(2) 反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=-x+1.

【解析】試題分析: 1)根據(jù)正切函數(shù),可得AH的長(zhǎng),根據(jù)勾股定理,可得AO的長(zhǎng),根據(jù)三角形的周長(zhǎng),可得答案;

2)根據(jù)待定系數(shù)法,可得函數(shù)解析式.

試題解析:(1)由OH=3,tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5,

△AHO的周長(zhǎng)=AO+AH+OH=3+4+5=12

2)將A點(diǎn)坐標(biāo)代入y=k≠0),得

k=-4×3=-12

反比例函數(shù)的解析式為y=;

當(dāng)y=-2時(shí),-2=,解得x=6,即B6,-2).

AB點(diǎn)坐標(biāo)代入y=ax+b,得

解得,

一次函數(shù)的解析式為y=-x+1

考點(diǎn):反比例函數(shù)與一次函數(shù)的交點(diǎn)問(wèn)題.

型】解答
結(jié)束】
21

【題目】如圖,AB為⊙O的直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,過(guò)點(diǎn)C作CE⊥DB交DB的延長(zhǎng)線于點(diǎn)E,直線AB與CE相交于點(diǎn)F.

(1)求證:CF為⊙O的切線;

(2)填空:當(dāng)∠CAB的度數(shù)為________時(shí),四邊形ACFD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將ABO繞點(diǎn)A順時(shí)針旋轉(zhuǎn)到AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將AB1C1繞點(diǎn)B1順時(shí)針旋轉(zhuǎn)到A1B1C2的位置,點(diǎn)C2在x軸上,將A1B1C2繞點(diǎn)C2順時(shí)針旋轉(zhuǎn)到A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則B2的坐標(biāo)為_____;點(diǎn)B2016的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)操作發(fā)現(xiàn):

如圖,在矩形ABCD中,E是BC的中點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長(zhǎng)AF交CD于點(diǎn)G.猜想線段GF與GC有何數(shù)量關(guān)系?并證明你的結(jié)論.

(2)類(lèi)比探究:

如圖,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,O是對(duì)角線AC的中點(diǎn),過(guò)OAC的垂線與邊ADBC分別交于E、F。

1)求證:四邊形AFCE是菱形;

2)若AFBC,試猜想四邊形AFCE是什么特殊四邊形,并說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)解方程組

2)解不等式

3)利用簡(jiǎn)單方法計(jì)算:

4)因式分解:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知BE平分∠ABCE點(diǎn)在線段AD上,∠ABE=∠AEB,ADBC平行嗎?為什么?

解:因?yàn)?/span>BE平分∠ABC(已知)

所以∠ABE=∠EBC    

因?yàn)椤?/span>ABE=∠AEB   

所以∠   =∠      

所以ADBC    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(0,4),線段的位置如圖所示,其中點(diǎn)的坐標(biāo)為(,),點(diǎn)的坐標(biāo)為(3,).

(1)將線段平移得到線段,其中點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).

①點(diǎn)平移到點(diǎn)的過(guò)程可以是:先向 平移 個(gè)單位長(zhǎng)度,再向 平移 個(gè)單位長(zhǎng)度;

②點(diǎn)的坐標(biāo)為 .

(2)(1)的條件下,若點(diǎn)的坐標(biāo)為(4,0),連接,畫(huà)出圖形并求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案