【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直

線交菱形ABCD的邊于M、N兩點.設(shè)AC2BD1,APxAMN的面積為y,則

y關(guān)于x的函數(shù)圖象大致形狀是【 】

【答案】C

【解析】AMN的面積= AP×MN,通過題干已知條件,用x分別表示出APMN,根據(jù)所得的函數(shù),利用其圖象,可分兩種情況解答:(10x≤1;(21x2;

解:(1)當(dāng)0x≤1時,如圖,

在菱形ABCD中,AC=2,BD=1AO=1,且ACBD;

MNAC,

MNBD;

∴△AMN∽△ABD,

=,

即,=,MN=x;

y=AP×MN=x20x≤1),

0

函數(shù)圖象開口向上;

2)當(dāng)1x2,如圖,

同理證得,CDB∽△CNM,=,

=,MN=2-x;

y=

AP×MN=2-x),

y=-x2+x;

-0,

函數(shù)圖象開口向下;

綜上答案C的圖象大致符合.

故選:C

本題考查了二次函數(shù)的圖象,考查了學(xué)生從圖象中讀取信息的數(shù)形結(jié)合能力,體現(xiàn)了分類討論的思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是矩形紙片,.對折矩形紙片,使重合,折痕為;展平后再過點折疊矩形紙片,使點落在上的點,折痕相交于點;再次展平,連接,,延長于點.以下結(jié)論:①;②;③;④是等邊三角形; 為線段上一動點,的中點,則的最小值是.其中正確結(jié)論的序號是( ).

A. ①②④B. ①④⑤C. ①③④D. ①②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一直角坐標系中,拋物線C1yax22x3與拋物線C2yx2+mx+n關(guān)于y軸對稱,C2x軸交于AB兩點,其中點A在點B的左側(cè).

1)求拋物線C1,C2的函數(shù)表達式;

2)求AB兩點的坐標;

3)在拋物線C1上是否存在一點P,在拋物線C2上是否存在一點Q,使得以AB為邊,且以AB、P、Q四點為頂點的四邊形是平行四邊形?若存在,求出P、Q兩點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過點A(﹣20),點B0,4.

1)求這條拋物線的表達式;

2P是拋物線對稱軸上的點,聯(lián)結(jié)ABPB,如果∠PBO=BAO,求點P的坐標;

3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點DDEx軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BEO的直徑,點A和點D是⊙O上的兩點,過點A作⊙O的切線交BE延長線于點.

(1)若∠ADE=25°,求∠C的度數(shù);

(2)若AB=AC,CE=2,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為改善生態(tài)環(huán)境,防止水土流失,某村計劃在江漢堤坡種植白楊樹,現(xiàn)甲、乙兩家林場有相同的白楊樹苗可供選擇,其具體銷售方案如下:

甲林場

乙林場

購樹苗數(shù)量

銷售單價

購樹苗數(shù)量

銷售單價

不超過1000棵時

4/

不超過2000棵時

4/

超過1000棵的部分

3.8/

超過2000棵的部分

3.6/

設(shè)購買白楊樹苗x棵,到兩家林場購買所需費用分別為y(元)、y(元).

1)該村需要購買1500棵白楊樹苗,若都在甲林場購買所需費用為   元,若都在乙林場購買所需費用為   元;

2)分別求出y、yx之間的函數(shù)關(guān)系式;

3)如果你是該村的負責(zé)人,應(yīng)該選擇到哪家林場購買樹苗合算,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C地在A地的正東方向,因有大山阻隔,由A地到C地需繞行B地,已知B地位于A地北偏東67°方向,距離A520km,C地位于B地南偏東30°方向,若打通穿山隧道,建成兩地直達高鐵,求A地到C地之間高鐵線路的長.(結(jié)果保留整數(shù))

(參考數(shù)據(jù):sin67°≈,cos67°≈,tan67°≈≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點PPAPB,分別與以OA為半徑的半圓切于A,B,延長AO交切線PB于點C,交半圓與于點D

1)若PC=5,AC=4,求BC的長;

2)設(shè)DC:AD=1:2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某海域,一艘海監(jiān)船在P處檢測到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時的速度去截獲不明船只,經(jīng)過1.5小時,剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41≈1.73,結(jié)果保留一位小數(shù)).

查看答案和解析>>

同步練習(xí)冊答案