如圖,正三角形外接圓的半徑為2,那么這個(gè)正三角形的邊長(zhǎng)為
2
3
2
3
分析:連接OA,并作OD⊥AB于D,可求得AD=OA•cos30°=32,則AB=3.
解答:解:連接OA,并作OD⊥AB于D,則:
∠OAD=30°,
OA=2,
∴OD=1,
∴BD=
OB2-OD2
=
3

∴CB=2
3

故答案為2
3
點(diǎn)評(píng):此題主要考查由外接圓的半徑求內(nèi)接等邊三角形的邊長(zhǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正三角形、正方形、正六邊形等正n邊形與圓的形狀有差異,我們將正n邊形與圓的接近程度稱為“接近度”、在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等、
(1)設(shè)正n邊形的每個(gè)內(nèi)角的度數(shù)為m°,將正n邊形的“接近度”定義為|180-m|、于是,|180-m|越小,該正n邊形就越接近于圓,
①若n=20,則該正n邊形的“接近度”等于
 

②當(dāng)“接近度”等于
 
時(shí),正n邊形就成了圓.
(2)設(shè)一個(gè)正n邊形的半徑(即正n邊形外接圓的半徑)為R,邊心距(即正n邊形的中心到各邊的距離)為r,將正n邊形的“接近度”定義為|R-r|,于是|R-r|越小,正n邊形就越接近于圓;你認(rèn)為這種說精英家教網(wǎng)法是否合理?若不合理,請(qǐng)給出正n邊形“接近度”的一個(gè)合理定義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,正三角形、正方形、正六邊形等正n邊形與圓的形狀有差異,我們將正n邊形與圓的接近程度稱為“接近度”.
(1)角的“接近度”定義:設(shè)正n邊形的每個(gè)內(nèi)角的度數(shù)為m°,將正n邊形的“接近度”定義為|180-m|.于是,|180-m|越小,該正n邊形就越接近于圓,
①若n=3,則該正n邊形的“接近度”等于
 

②若n=20,則該正n邊形的“接近度”等于
 

③當(dāng)“接近度”等于
 
.  時(shí),正n邊形就成了圓.
(2)邊的“接近度”定義:設(shè)一個(gè)正n邊形的外接圓的半徑為R,正n邊形的中心到各邊的距離為d,將正n邊形的“接近度”定義為|
dR
-1|
.分別計(jì)算n=3,n=6時(shí)邊的“接近度”,并猜測(cè)當(dāng)邊的“接近度”等于多少時(shí),正n邊形就成了圓?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,正三角形、正方形、正六邊形等正n邊形與圓的形狀有差異,我們將正n邊形與圓的接近程度稱為“接近度”、在研究“接近度”時(shí),應(yīng)保證相似圖形的“接近度”相等、
(1)設(shè)正n邊形的每個(gè)內(nèi)角的度數(shù)為m°,將正n邊形的“接近度”定義為|180-m|、于是,|180-m|越小,該正n邊形就越接近于圓,
①若n=20,則該正n邊形的“接近度”等于______;
②當(dāng)“接近度”等于______時(shí),正n邊形就成了圓.
(2)設(shè)一個(gè)正n邊形的半徑(即正n邊形外接圓的半徑)為R,邊心距(即正n邊形的中心到各邊的距離)為r,將正n邊形的“接近度”定義為|R-r|,于是|R-r|越小,正n邊形就越接近于圓;你認(rèn)為這種說法是否合理?若不合理,請(qǐng)給出正n邊形“接近度”的一個(gè)合理定義.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年浙江省杭州市中考數(shù)學(xué)模擬試卷(17)(解析版) 題型:解答題

如圖,正三角形、正方形、正六邊形等正n邊形與圓的形狀有差異,我們將正n邊形與圓的接近程度稱為“接近度”.
(1)角的“接近度”定義:設(shè)正n邊形的每個(gè)內(nèi)角的度數(shù)為m°,將正n邊形的“接近度”定義為|180-m|.于是,|180-m|越小,該正n邊形就越接近于圓,
①若n=3,則該正n邊形的“接近度”等于______.
②若n=20,則該正n邊形的“接近度”等于______.
③當(dāng)“接近度”等于______.  時(shí),正n邊形就成了圓.
(2)邊的“接近度”定義:設(shè)一個(gè)正n邊形的外接圓的半徑為R,正n邊形的中心到各邊的距離為d,將正n邊形的“接近度”定義為.分別計(jì)算n=3,n=6時(shí)邊的“接近度”,并猜測(cè)當(dāng)邊的“接近度”等于多少時(shí),正n邊形就成了圓?

查看答案和解析>>

同步練習(xí)冊(cè)答案