如圖,要設計一個矩形的花壇,花壇長60 m,寬40 m,有兩條縱向甬道和一條橫向甬道,橫向甬道的兩側(cè)有兩個半圓環(huán)形甬道,半圓環(huán)形甬道的內(nèi)半圓的半徑為10 m,橫向甬道的寬度是其它各甬道寬度的2倍.設橫向甬道的寬為2x m.(π的值取3)

(1)用含x的式子表示兩個半圓環(huán)形甬道的面積之和;
(2)當所有甬道的面積之和比矩形面積的多36 m2時,求x的值.
(1)π(10+x)2-π×102=3x2+60x(m2);(2)2

試題分析:(1)由于半圓環(huán)形甬道的內(nèi)半圓的半徑為10m,橫向甬道的寬度是其它各甬道寬度的2倍,而橫向甬道的寬為2x,由此得到半圓環(huán)形甬道的外半圓的半徑為(10+x)m,然后利用圓的面積公式即可求出兩個半圓環(huán)形甬道的面積之和;
(2)首先用x表示所有甬道的面積之和,然后根據(jù)已知條件的關(guān)于x的方程,解方程即可求解
試題解析:(1)兩個半圓環(huán)形甬道的面積=π(10+x)2-π×102=3x2+60x(m2);
(2)依題意,得40×x×2+60×2x―2x2×2+3x2+60x =×60×40+36
整理得x2―260x+516=0,解得x1=2,x2=258(不符合題意,舍去)
∴x = 2.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:填空題

若二次函數(shù)y=x2-4x+c的圖象與x軸沒有交點,其中c為整數(shù),則c=_________(只要求寫出一個)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

直角坐標平面上將二次函數(shù)y=x2﹣2的圖象向左平移1個單位,再向上平移1個單位,則其頂點為(   )
A.(0,0)B.(1,﹣1)C.(0,﹣1)D.(﹣1,﹣1)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等邊△ABC中,AB=3,D、E分別是AB、AC上的點,且DE∥BC,將△ADE沿DE翻折,與梯形BCED重疊的部分記作圖形L.

(1)求△ABC的面積;
(2)設AD=x,圖形L的面積為y,求y關(guān)于x的函數(shù)解析式;
(3)已知圖形L的頂點均在⊙O上,當圖形L的面積最大時,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標為(-3,0)。

(1)求點B的坐標;
(2)已知,C為拋物線與y軸的交點。
①若點P在拋物線上,且,求點P的坐標;
②設點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)軸交點是,則的值是(    )
A.2014B.2013C.2012D.2011

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

拋物線y=2x2的對稱軸為               

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知拋物線的對稱軸為,點A,B均在拋物線上,且與x軸平行,其中點的坐標為(n,3),則點的坐標為(    ).
A.(n+2,3)B.(,3)C.(,3)D.(,3)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

把二次函數(shù)配方成頂點式為(    )
A.B.C.D.

查看答案和解析>>

同步練習冊答案