【題目】如圖,把六張大小完全相同的小長方形卡片(如圖①)不重疊無縫隙的放在一個底面為長方形(長為,寬為)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長之和是(

A.B.C.D.

【答案】B

【解析】

設(shè)圖①小長方形的長為a,寬為b,由圖②表示出上面與下面兩個長方形的周長,求出之和,根據(jù)題意得出a+3b=m,代入計算即可.

解:設(shè)圖①小長方形的長為a,寬為b,

上面的長方形的周長:2(m-3b+n-3b)

下面的長方形的周長:2(n-a+m-a)

周長之和為:2m+2n-12b+2n+2m-4a=4m+4n-12b-4a

由圖②得出:a+3b=m

代入可得出:4m+4n-12b-4a=4n

故答案為:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】浠水縣商場某柜臺銷售每臺進(jìn)價分別為160元、120元的A、B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

3

4

1200

第二周

5

6

1900

(進(jìn)價、售價均保持不變,利潤=銷售收入﹣進(jìn)貨成本)

(1)求A、B兩種型號的電風(fēng)扇的銷售單價;

(2)若商場準(zhǔn)備用不多于7500元的金額再采購這兩種型號的電風(fēng)扇共50臺,求A種型號的電風(fēng)扇最多能采購多少臺?

(3)在(2)的條件下,商場銷售完這50臺電風(fēng)扇能否實現(xiàn)利潤超過1850元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△BAC中,∠BAC=90°,將△ABC繞點A順時針旋轉(zhuǎn)90°得到△AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′),連接CC′,若∠CC′B′=30°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,C=90°,點OAC上,以OA為半徑的OAB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE

1)判斷直線DEO的位置關(guān)系,并說明理由;

2)若AC=6,BC=8OA=2,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD,E為平面內(nèi)任意一點,連接DE,將線段DE繞點D順時針旋轉(zhuǎn)90°得到DG,連接EC,AG

1)當(dāng)點E在正方形ABCD內(nèi)部時,

①根據(jù)題意,在圖1中補(bǔ)全圖形;

②判斷AGCE的數(shù)量關(guān)系與位置關(guān)系并寫出證明思路.

2)當(dāng)點B,D,G在一條直線時,若AD4,DG,求CE的長.(可在備用圖中畫圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的三邊AB、BC、CA分別為邊,在BC的同側(cè)作等邊△ABD、等邊△BCE、等邊△CAE,求證:四邊形ADEF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解題:據(jù)專家預(yù)測今年受厄爾尼諾現(xiàn)象影響,我國大部分地區(qū)可能遇到洪澇災(zāi)害.進(jìn)入防汛期前,某地對河堤進(jìn)行了加固.該地駐軍在河堤加固的工程中出色完成了任務(wù).這是記者與駐軍工程指揮官的一段對話:

你們是用9天完成4800米長的大壩加固任務(wù)的

我們加固600米后采用新的加固模式,這樣每天加固長度是原來的2

通過這段對話請你求出該地駐軍原來每天加固的米數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),△ABC,AB=BC,PAB邊上一點,連接CP,PA、PC為鄰邊作APCDACPD相交于點E,已知∠ABC=∠AEP=(0°<<90°).

(1)求證: ∠EAP=∠EPA;

(2)APCD是否為矩形?請說明理由;

(3)如圖(2),FBC中點,連接FP,∠AEP繞點E順時針旋轉(zhuǎn)適當(dāng)?shù)慕嵌?/span>,得到∠MEN(M、N分別是∠MEN的兩邊與BA、FP延長線的交點).猜想線段EMEN之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AM//BN,∠A=600.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.

(1)①∠ABN的度數(shù)是 ;②∵AM //BN,∴∠ACB=∠ ;

(2)求∠CBD的度數(shù);

(3)當(dāng)點P運動時,∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.

(4)當(dāng)點P運動到使∠ACB=∠ABD時,∠ABC的度數(shù)是 .

查看答案和解析>>

同步練習(xí)冊答案