【題目】如圖(1),在△ABC中,AB=BC,P為AB邊上一點(diǎn),連接CP,以PA、PC為鄰邊作APCD,AC與PD相交于點(diǎn)E,已知∠ABC=∠AEP=(0°<<90°).
(1)求證: ∠EAP=∠EPA;
(2)APCD是否為矩形?請說明理由;
(3)如圖(2),F為BC中點(diǎn),連接FP,將∠AEP繞點(diǎn)E順時針旋轉(zhuǎn)適當(dāng)?shù)慕嵌?/span>,得到∠MEN(點(diǎn)M、N分別是∠MEN的兩邊與BA、FP延長線的交點(diǎn)).猜想線段EM與EN之間的數(shù)量關(guān)系,并證明你的結(jié)論.
【答案】(1)見解析;
(2)APCD是矩形.,理由見解析;
(3)EM=EN,理由見解析.
【解析】
(1)根據(jù)AB=BC可證∠CAB=∠ACB,則在△ABC與△AEP中,有兩個角對應(yīng)相等,根據(jù)三角形內(nèi)角和定理,即可證得;
(2)由(1)知∠EPA=∠EAP,則AC=DP,根據(jù)對角線相等的平行四邊形是矩形即可求證;
(3)可以證明△EAM≌△EPN,從而得到EM=EN.
證明:(1)在△ABC和△AEP中,
∠ABC=∠AEP,∠BAC=∠EAP,
∠ACB=∠APE,
在△ABC中,AB=BC.∠ACB=∠BAC,
∠EPA=∠EAP,
(2)APCD是矩形.
四邊形APCD是平行四邊形,
AC=2EA,PD=2EP.
由(1)知, ∠EPA=∠EAP.
EA=EP,進(jìn)而AC=PD
APCD是矩形.
(3)EM=EN
EA=EP,∠EPA=90° -
∠EAM=180°-∠EAP =180°-∠EPA= 180°-(90°-)=90°+
由(2)知, ∠CPB=90°,F是BC的中點(diǎn),FP=FB,
∠FPB=∠ABC=,
∠EPN=∠EPA+∠APN=∠EPA+∠FPB=90° -+=90°+
∠EAM=∠EPN
∠AEP繞點(diǎn)E順時針旋轉(zhuǎn)適當(dāng)?shù)慕嵌,得?/span>∠MEN,
∠AEP-∠AEN =∠MEN-∠AEN,即∠MEA=∠NEP.
△EAM≌△EPN,
EM=EN.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明對自己上學(xué)路線的長度進(jìn)行了20次測量,得到20個數(shù)據(jù)x1,x2,…,x20,已知x1+x2+…+x20=2019,當(dāng)代數(shù)式(x﹣x1)2+(x﹣x2)2+…+(x﹣x20)2取得最小值時,x的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把六張大小完全相同的小長方形卡片(如圖①)不重疊無縫隙的放在一個底面為長方形(長為,寬為)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長之和是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)要求完成畫圖或作答:
如圖所示,已知點(diǎn)、、是網(wǎng)格紙上的三個格點(diǎn).
(1)畫射線,畫線段,過點(diǎn)畫的平行線;
(2)過點(diǎn)畫直線的垂線,垂足為點(diǎn),則點(diǎn)到的距離就是線段_________的長度.
(3)線段_______線段(填“”或“”),理由是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某長方形廣場長為a米,寬為b米;廣場的中間圓形綠地的半徑為米;廣場的死角都有一塊半徑相同的四分之一圓形的綠地,且圓形綠地的半徑也為米;
(1)請用代數(shù)式分別表示綠地的總面積和空地的面積(結(jié)果保留π);
(2)若長方形長為500米,寬為300米,求廣場空地的面積。(π取3.14,并保留兩個有效數(shù)學(xué))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上有A、B、C、D四個整數(shù)點(diǎn)即各點(diǎn)均表示整數(shù),且,若A、D兩點(diǎn)表示的數(shù)的分別為和6,點(diǎn)E為BD的中點(diǎn),那么該數(shù)軸上上述五個點(diǎn)所表示的整數(shù)中,離線段BD的中點(diǎn)最近的整數(shù)是
A. B. 0C. 1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,點(diǎn)E、F分別從點(diǎn)B、D出發(fā)以同樣的速度沿邊BC、DC向點(diǎn)C運(yùn)動.給出以下四個結(jié)論:
①AE=AF;
②∠CEF=∠CFE;
③當(dāng)點(diǎn)E,F(xiàn)分別為邊BC,DC的中點(diǎn)時,△AEF是等邊三角形;
④當(dāng)點(diǎn)E,F(xiàn)分別為邊BC,DC的中點(diǎn)時,△AEF的面積最大.
上述結(jié)論中正確的序號有 .(把你認(rèn)為正確的序號都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸的正半軸上.若點(diǎn),在線段上,且為某個一邊與軸平行的矩形的對角線,則稱這個矩形為點(diǎn)、的“涵矩形”.下圖為點(diǎn),的“涵矩形”的示意圖.
(1)點(diǎn)的坐標(biāo)為.
①若點(diǎn)的橫坐標(biāo)為,點(diǎn)與點(diǎn)重合,則點(diǎn)、的“涵矩形”的周長為__________.
②若點(diǎn),的“涵矩形”的周長為,點(diǎn)的坐標(biāo)為,則點(diǎn),,中,能夠成為點(diǎn)、的“涵矩形”的頂點(diǎn)的是_________.
(2)四邊形是點(diǎn)、的“涵矩形”,點(diǎn)在的內(nèi)部,且它是正方形.
①當(dāng)正方形的周長為,點(diǎn)的橫坐標(biāo)為時,求點(diǎn)的坐標(biāo).
②當(dāng)正方形的對角線長度為時,連結(jié).直接寫出線段的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AD是邊BC上的中線,過點(diǎn)A作AE∥BC,過點(diǎn)D作DE∥AB,DE與AC、AE分別交于點(diǎn)O、點(diǎn)E,連結(jié)EC.
(1)求證:AD=EC;
(2)求證:四邊形ADCE是菱形;
(3)若AB=AO,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com