已知.求a=-1時(shí),

的值.

答案:-19
解析:

由已知得

當(dāng)a=1時(shí),


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

A、B兩座城市之間有一條高速公路,甲、乙兩輛汽車(chē)同時(shí)分別從這條路兩端的入口處駛?cè)耄⑹冀K在高速公路上正常行駛.甲車(chē)駛往B城,乙車(chē)駛往A城,甲車(chē)在行駛過(guò)程中速度始終不變.甲車(chē)距B城高速公路入口處的距離y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系如圖.
(1)求y關(guān)于x的表達(dá)式;
(2)已知乙車(chē)以60千米/時(shí)的速度勻速行駛,設(shè)行駛過(guò)程中,兩車(chē)相距的路程為s(千米).請(qǐng)直接寫(xiě)出s關(guān)于x的表達(dá)式;
(3)當(dāng)乙車(chē)按(2)中的狀態(tài)行駛與甲車(chē)相遇后,速度隨即改為a(千米/時(shí))并保持勻速行駛,結(jié)果比甲車(chē)晚40分鐘到達(dá)終點(diǎn),求乙車(chē)變化后的速度a.在下圖中精英家教網(wǎng)畫(huà)出乙車(chē)離開(kāi)B城高速公路入口處的距離y(千米)與行駛時(shí)間x(時(shí))之間的函數(shù)圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃埔區(qū)一模)已知拋物線L:y=x2-(k-2)x+(k+1)2
(1)證明:不論k取何值,拋物線L的頂點(diǎn)C總在拋物線y=3x2+12x+9上;
(2)已知-4<k<0時(shí),拋物線L和x軸有兩個(gè)不同的交點(diǎn)A、B,求A、B間距取得最大值時(shí)k的值;
(3)在(2)A、B間距取得最大值條件下(點(diǎn)A在點(diǎn)B的右側(cè)),直線y=ax+b是經(jīng)過(guò)點(diǎn)A,且與拋物線L相交于點(diǎn)D的直線.問(wèn)是否存在點(diǎn)D,使△ABD為等邊三角形?如果存在,請(qǐng)寫(xiě)出此時(shí)直線AD的解析式;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知x=2,y=-4時(shí),代數(shù)式ax3+
1
2
by+9
的值等于2009;求當(dāng)x=-4,y=-
1
2
時(shí),代數(shù)式3ax-24by3+4986的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:044

已知.求a=-1時(shí),

的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案