如果一個三角形的三邊之比是1:2:
3
,判斷此三角形的形狀是
 
三角形.
分析:三角形是直角三角形,這里給出三邊的長,只要用兩小邊的平方和等于最長邊的平方即可求解.
解答:解:∵三角形的三邊之比是1:2:
3
,
∴12+(
3
2=22,
∴三角形是直角三角形.
點評:在應(yīng)用勾股定理的逆定理時,應(yīng)先認真分析所給邊的大小關(guān)系,確定最大邊后,再驗證兩條較小邊的平方和與最大邊的平方之間的關(guān)系,進而作出判斷.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如果一個三角形的三邊長分別為1、k、4.則化簡|2k-5|-
k2-12k+36
的結(jié)果是( 。
A、3k-11B、k+1
C、1D、11-3k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果一個三角形的三邊長分別為1,k,3,則化簡7-
4k2-36k+81
-|2k-3|
的結(jié)果是( 。
A、-5B、1
C、13D、19-4k

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

閱讀與解答:
古希臘的幾何學(xué)家海倫,在他的著作《度量》一書中,給出了下面一個公式:
如果一個三角形的三邊長分別為a,b,c,設(shè)p=
a+b+c
2
,則三角形的面積為S=
p(p-a)(p-b)(p-c)

請你解答:在△ABC中,BC=4,AC=5,AB=6,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

【閱讀理解】
“海倫(Heron)公式”:如果一個三角形的三邊長分別為a,b,c,設(shè)p=
a+b+c
2
,則三角形的面積為S=
p(p-a)(p-b)(p-c)

【問題解決】
(1)如圖,在△ABC中,BC=2.5,AC=6,AB=6.5.請用“海倫公式”求△ABC的面積.
(2)小怡同學(xué)認為(1)中運算太繁,并想到了一種不同的解法.你知道他想到了什么方法?請寫出來.

查看答案和解析>>

同步練習(xí)冊答案