【題目】如圖,在△ABC中,AB8,∠CBA30°,以AB為直徑作半圓O,半圓O恰好經(jīng)過點C,點D在線段AB上運動,點E與點D關(guān)于AC對稱,DFDE于點D,并交EC的延長線于點F

1)求證:CECF

2)填空:DF與半圓O相交于點P,則當(dāng)點D與點O重合時,的長為   

在點D的運動過程中,當(dāng)EF與半圓O相切時,EF的長為   

【答案】1)見解析;(2)①;②4

【解析】

1)由點E與點D關(guān)于AC對稱可得CECD,再根據(jù)DFDE即可證到CECF;

2)①根據(jù)已知條件得到DEAC,推出DFBC,得到∠FDB60°,根據(jù)弧長的公式即可得到結(jié)論;

②連接OCCD,推出AOC是等邊三角形,根據(jù)切線的性質(zhì)得到∠ACE=∠B30°,得到∠OCD30°,根據(jù)三角函數(shù)的定義得到CDsin60°AC2,于是得到結(jié)論.

1)連接CD,如圖所示,

∵點E與點D關(guān)于AC對稱,

CECD,

∴∠E=∠CDE

DFDE,

∴∠EDF90°,

∴∠E+F90°,∠CDE+CDF90°,

∴∠F=∠CDF,

CDCF,

CECDCF;

2)①∵點E與點D關(guān)于AC對稱,

DEAC,

∵∠ACB=∠EDF90°,

DFBC,

∴∠FDB60°,

當(dāng)點D與點O重合時,的長=,

故答案為:;

②連接OCCD,

∵∠CBA30°,

∴∠AOC60°

OCOA,

∴△AOC是等邊三角形,

EF與半圓O相切,

∴∠ACE=∠B30°

∴∠ACD30°,

∴∠ADC90°,

∴∠OCD30°,

CDsin60°AC2

CECDCF,

EF2CD4

故答案為:4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國的《洛書》中記載著世界上最古老幻方:將1-9這九個數(shù)字填入3×3的方格內(nèi),使三行、三列、兩對角線上的三個數(shù)之和都相等.如圖的幻方中字母m所能表示的所有數(shù)中最大的數(shù)是(

A.6B.7C.8D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將含30°的直角三角板ABC(∠A30°)繞其直角頂點C順時針旋轉(zhuǎn)α角(α90°),得到RtABCACAB交于點D,過點DDEABCB于點E,連接BE.易知,在旋轉(zhuǎn)過程中,BDE為直角三角形.設(shè)BC1,ADx,BDE的面積為S

1)當(dāng)α30°時,求x的值.

2)求Sx的函數(shù)關(guān)系式,并寫出x的取值范圍;

3)以點E為圓心,BE為半徑作⊙E,當(dāng)S時,判斷⊙EAC的位置關(guān)系,并求相應(yīng)的tanα值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列各式規(guī)律:① 52-22=3×7;②72-42=3×11;③ 92-62=3×11;;根據(jù)上面等式的規(guī)律:

1)寫出第6個和第n個等式;

2)證明你寫的第n個等式的正確性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直角三角形紙片的兩直角邊ACBC的比為34,首先將△ABC如圖1所示折疊,使點C落在AB上,折痕為BD,然后將△ABD如圖2所示折疊,使點B與點D重合,折痕為EF,則sinDEA的值為( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐的高為,母線為,且,圓錐的側(cè)面展開圖為如圖所示的扇形.將扇形沿折疊,使點恰好落在上的點,則弧長與圓錐的底面周長的比值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新冠疫情期間,某醫(yī)藥器材經(jīng)銷商計劃同時購進一批甲、乙兩種型號的口罩,若購進2箱甲型口罩和1箱乙型口罩,共需要資金2800元;若購進3箱甲型口罩和2箱乙型口罩,共需要資金4600元.

1)求甲、乙型號口罩每箱的進價為多少元?

2)該醫(yī)藥器材經(jīng)銷商計劃購進甲、乙兩種型號的口罩用于銷售,預(yù)汁用不多于1.8萬元且不少于1.74萬元的資金購進這兩種型號口罩共20箱,請問有幾種進貨方案?并寫出具體的進貨方案;

3)若銷售一箱甲型口罩,利潤率為40%,乙型口罩的售價為每箱1280元.為了促銷,公司決定每售出一箱乙型口罩,返還顧客現(xiàn)金元,而甲型口罩售價不變,要使(2)中所有方案獲利相同,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象過點(﹣20),對稱軸為直x1線,下列結(jié)論中:①abc0;②若Ax1m),Bx2,m)是拋物線上的兩點,當(dāng)xx1+x2時,yc;③若方程ax+2)(4x)=﹣2的兩根為x1,x2,且x1x2,則﹣2x1x24;④(a+c2b2;一定正確的是______(填序號即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為做好新型肺炎疫情防控,某社區(qū)開展新型肺炎疫情排查與宣傳教育志愿服務(wù)活動,組織社區(qū)20名志愿者隨機平均分配在4個院落門甲、乙、丙、丁處值守,并對進出人員進行測溫度、勸導(dǎo)佩戴口罩、正確投放生活垃圾等服務(wù).

1)志愿者小明被分配到甲處服務(wù)是( )事件;

A.不可能事件 B.可能事件 C.必然事件 D.無法確定

2)請用列表或樹狀圖的方法,求出志愿者小明和小紅被隨機分配到同一處服務(wù)的概率.

查看答案和解析>>

同步練習(xí)冊答案