【題目】如圖,拋物線y=ax2+bx+2與x軸相交于A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求拋物線的解析式;
(2)將△ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到△BAD.
①求點(diǎn)D的坐標(biāo);
②判斷四邊形ADBC的形狀,并說(shuō)明理由;
(3)在該拋物線對(duì)稱軸上是否存在點(diǎn)P,使△BMP與△BAD相似?若存在,請(qǐng)求出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=﹣x2+x+2;(2)①點(diǎn)D的坐標(biāo)為(3,﹣2),②四邊形ADBC為矩形,理由見(jiàn)解析;(3)在該拋物線對(duì)稱軸上存在點(diǎn)P,使△BMP與△BAD相似,點(diǎn)P的坐標(biāo)為(,)或(,﹣)或(,5)或(,﹣5).
【解析】
(1)由點(diǎn)A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的解析式;
(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)C的坐標(biāo).①過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,根據(jù)旋轉(zhuǎn)的性質(zhì)可得出OA=EB、OC=ED,結(jié)合點(diǎn)A、B、O、C的坐標(biāo),即可找出點(diǎn)D的坐標(biāo);②由點(diǎn)A、B、C的坐標(biāo)可得出OA、OC、OB的長(zhǎng)度,利用勾股定理可求出AC、BC的長(zhǎng),由AC2+BC2=25=AB2可得出∠ACB=90°,再利用旋轉(zhuǎn)的性質(zhì)即可找出四邊形ADBC為矩形;
(3)假設(shè)存在,設(shè)點(diǎn)P的坐標(biāo)為(,m),由點(diǎn)M為AB的中點(diǎn)可得出∠BPD=∠ADB=90°,分△PMB∽△BDA及△BMP∽△BDA兩種情況考慮,利用相似三角形的性質(zhì)可得出關(guān)于m的含絕對(duì)值的一元一次方程,解之即可得出結(jié)論.
(1)將A(﹣1,0)、B(4,0)代入y=ax2+bx+2,得:,解得:,
∴拋物線的解析式為y=﹣x2+x+2.
(2)當(dāng)x=0時(shí),y=﹣x2+x+2=2,
∴點(diǎn)C的坐標(biāo)為(0,2).
①過(guò)點(diǎn)D作DE⊥x軸于點(diǎn)E,如圖1所示.
∵將△ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到△BAD,
∴OA=EB,OC=ED.
∵A(﹣1,0),O(0,0),C(0,2),B(4,0),
∴BE=1,DE=2,OE=3,
∴點(diǎn)D的坐標(biāo)為(3,﹣2).
②四邊形ADBC為矩形,理由如下:
∵A(﹣1,0),B(4,0),C(0,2),
∴OA=1,OC=2,OB=4,AB=5,
∴AC=,BC=.
∵AC2+BC2=25=AB2,
∴∠ACB=90°.
∵將△ABC繞AB中點(diǎn)M旋轉(zhuǎn)180°,得到△BAD,
∴∠ABC=∠BAD,BC=AD,
∴BC∥AD且BC=AD,
∴四邊形ADBC為平行四邊形.
又∵∠ACB=90°,
∴四邊形ADBC為矩形.
(3)假設(shè)存在,設(shè)點(diǎn)P的坐標(biāo)為(,m).
∵點(diǎn)M為AB的中點(diǎn),
∴∠BPD=∠ADB=90°,
∴有兩種情況(如圖2所示).
①當(dāng)△PMB∽△BDA時(shí),有,即,
解得:m=±,
∴點(diǎn)P的坐標(biāo)為(,)或(,﹣);
②當(dāng)△BMP∽△BDA時(shí),有,即,
解得:m=±5,
∴點(diǎn)P的坐標(biāo)為(,5)或(,﹣5).
綜上所述:在該拋物線對(duì)稱軸上存在點(diǎn)P,使△BMP與△BAD相似,點(diǎn)P的坐標(biāo)為(,)或(,﹣)或(,5)或(,﹣5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過(guò)點(diǎn)A(,0),直線y=kx-2k+3與⊙O交于B、C兩點(diǎn),則弦BC的長(zhǎng)的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,OD⊥弦BC于點(diǎn)D,交⊙O于點(diǎn)E,AE與BC交于點(diǎn)F,點(diǎn)H為OD延長(zhǎng)線上一點(diǎn),且∠OHB=∠AEC.
(1)求證:BH是⊙O的切線;
(2)求證:CE2=EF·EA;
(3)若⊙O的半徑為5,sin∠C=,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張邊長(zhǎng)為8的正方形紙片OABC放在直角坐標(biāo)系中,使得OA與y軸重合,OC與x軸重合,點(diǎn)P為正方形AB邊上的一點(diǎn)(不與點(diǎn)A、點(diǎn)B重合).將正方形紙片折疊,使點(diǎn)O落在P處,點(diǎn)C落在G處,PG交BC于H,折痕為EF.連接OP、OH.
初步探究
(1)當(dāng)AP=4時(shí)
①直接寫出點(diǎn)E的坐標(biāo) ;
②求直線EF的函數(shù)表達(dá)式.
深入探究
(2)當(dāng)點(diǎn)P在邊AB上移動(dòng)時(shí),∠APO與∠OPH的度數(shù)總是相等,請(qǐng)說(shuō)明理由.
拓展應(yīng)用
(3)當(dāng)點(diǎn)P在邊AB上移動(dòng)時(shí),△PBH的周長(zhǎng)是否發(fā)生變化?并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)G在邊DC的延長(zhǎng)線上,AG交邊BC于點(diǎn)E,交對(duì)角線BD于點(diǎn)F.
(1)求證:AF2=EFFG;
(2)如果EF=,F(xiàn)G=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=2∠A,過(guò)點(diǎn)C的直線能將△ABC分成兩個(gè)等腰三角形,則∠A的度數(shù)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀材科)小明同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,
如果具有公共的項(xiàng)角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組全等的三角形,小明把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小明發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則△ABD≌△ACE.
(材料理解)(1)在圖1中證明小明的發(fā)現(xiàn).
(深入探究)(2)如圖2,△ABC和△AED是等邊三角形,連接BD,EC交于點(diǎn)O,連接AO,下列結(jié)論:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正確的有 .(將所有正確的序號(hào)填在橫線上).
(延伸應(yīng)用)(3)如圖3,AB=BC,∠ABC=∠BDC=60°,試探究∠A與∠C的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,為等腰三角形,,點(diǎn)在線段上(不與重合),以為腰長(zhǎng)作等腰直角,于.
(1)求證:;
(2)連接交于,若,求的值.
(3)如圖2,過(guò)作于的延長(zhǎng)線于點(diǎn),過(guò)點(diǎn)作交于,連接,當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí)(不與重合),式子的值會(huì)變化嗎?若不變,求出該值;若變化,請(qǐng)說(shuō)明理由..
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】朗讀者自開播以來(lái),以其厚重的文化底蘊(yùn)和感人的人文情懷,感動(dòng)了數(shù)以億計(jì)的觀眾,岳池縣某中學(xué)開展“朗讀”比賽活動(dòng),九年級(jí)、班根據(jù)初賽成績(jī),各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)滿分為100分如圖所示.
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九班 | 85 | 85 | |
九班 | 80 |
根據(jù)圖示填寫表格;
結(jié)合兩班復(fù)賽成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)班級(jí)的復(fù)賽成績(jī)較好;
如果規(guī)定成績(jī)較穩(wěn)定班級(jí)勝出,你認(rèn)為哪個(gè)班級(jí)能勝出?說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com