某水果批發(fā)商銷(xiāo)售每箱進(jìn)價(jià)為40元的蘋(píng)果,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷(xiāo)售90箱,價(jià)格每提高1元,平均每天少銷(xiāo)售3箱.
(1)求平均每天銷(xiāo)售量y(箱)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?
分析:本題是通過(guò)構(gòu)建函數(shù)模型解答銷(xiāo)售利潤(rùn)的問(wèn)題.依據(jù)題意易得出平均每天銷(xiāo)售量(y)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式為y=90-3(x-50),然后根據(jù)銷(xiāo)售利潤(rùn)=銷(xiāo)售量×(售價(jià)-進(jìn)價(jià)),列出平均每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式,再依據(jù)函數(shù)的增減性求得最大利潤(rùn).
解答:解:(1)由題意得:
y=90-3(x-50)
化簡(jiǎn)得:y=-3x+240;(3分)
(2)由題意得:
w=(x-40)y
(x-40)(-3x+240)
=-3x
2+360x-9600;(3分)
(3)w=-3x
2+360x-9600
∵a=-3<0,
∴拋物線開(kāi)口向下.
當(dāng)
x=-=60時(shí),w有最大值.
又x<60,w隨x的增大而增大.
∴當(dāng)x=55元時(shí),w的最大值為1125元.
∴當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為55元時(shí),可以獲得1125元的最大利潤(rùn).(4分)
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì)在實(shí)際生活中的應(yīng)用.最大銷(xiāo)售利潤(rùn)的問(wèn)題常利函數(shù)的增減性來(lái)解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結(jié)合實(shí)際選擇最優(yōu)方案.其中要注意應(yīng)該在自變量的取值范圍內(nèi)求最大值(或最小值),也就是說(shuō)二次函數(shù)的最值不一定在x=
-時(shí)取得.