【題目】小明到離家2400米的體育館看球賽,進(jìn)場(chǎng)時(shí),發(fā)現(xiàn)門票還放在家中,此時(shí)離比賽還有40分鐘,于是他立即步行(勻速)回家取票,在家取票用時(shí)2分鐘,取到票后,他馬上騎自行車(勻速)趕往體育館.已知小明騎自行車從家趕往體育館比從體育館步行回家所用時(shí)間少20分鐘,騎自行車的速度是步行速度的3倍.
(1)小明步行的速度(單位:米/分鐘)是多少?
(2)小明能否在球賽開始前趕到體育館?
【答案】
(1)解:設(shè)小明步行速度為x米/分,則自行車的速度為3x米/分,
根據(jù)題意得: ﹣ =20,
解得:x=80,
經(jīng)檢驗(yàn)x=80是原方程的解.
故小明步行的速度是80米/分
(2)解:根據(jù)題意得,小明總共需要: + +2=42>40.
故小明不能在球賽開始前趕到體育館
【解析】(1)設(shè)小明步行速度為x米/分,則自行車的速度為3x米/分,根據(jù)等量關(guān)系:小明騎自行車從家趕往體育館比從體育館步行回家所用時(shí)間少20分鐘可得出方程,解出即可;(2)計(jì)算出步行、騎車及在家拿道具的時(shí)間和,然后與40比較即可作出判斷.
【考點(diǎn)精析】利用分式方程的應(yīng)用對(duì)題目進(jìn)行判斷即可得到答案,需要熟知列分式方程解應(yīng)用題的步驟:審題、設(shè)未知數(shù)、找相等關(guān)系列方程、解方程并驗(yàn)根、寫出答案(要有單位).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形是將正三角形按一定規(guī)律排列,則第4個(gè)圖形中所有正三角形的個(gè)數(shù)有( )
A.160
B.161
C.162
D.163
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為降低空氣污染,公交公司決定全部更換節(jié)能環(huán)保的燃?xì)夤卉嚕?jì)劃購(gòu)買A型和B型兩種公交車共10輛,其中每臺(tái)的價(jià)格,年均載客量如表:
A型 | B型 | |
價(jià)格(萬元/輛) | a | b |
年均載客量(萬人/年/輛) | 60 | 100 |
若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬元
(1)求購(gòu)買每輛A型公交車和每輛B型公交車分別多少萬元?
(2)如果該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過1200萬元,且確保這10輛公交車年均載客總和不少于680萬人次,有哪幾種購(gòu)車方案?請(qǐng)你設(shè)計(jì)一個(gè)方案,使得購(gòu)車總費(fèi)用最少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABO中,斜邊AB=1.若OC//BA,∠AOC=36°,則( )
A.點(diǎn)B到AO的距離為sin54°
B.點(diǎn)B到AO的距離為tan36°
C.點(diǎn)A到OC的距離為sin36°sin54°
D.點(diǎn)A到OC的距離為cos36°sin54°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】網(wǎng)癮低齡化問題已經(jīng)引起社會(huì)各界的高度關(guān)注,有關(guān)部門在全國(guó)范圍內(nèi)對(duì)12﹣35歲的網(wǎng)癮人群進(jìn)行了簡(jiǎn)單的隨機(jī)抽樣調(diào)查,繪制出以下兩幅統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中的信息,回答下列問題:
(1)這次抽樣調(diào)查中共調(diào)查了 人;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中18﹣23歲部分的圓心角的度數(shù)是 ;
(4)據(jù)報(bào)道,目前我國(guó)12﹣35歲網(wǎng)癮人數(shù)約為2000萬,請(qǐng)估計(jì)其中12﹣23歲的人數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一塊破損的木板.
(1)請(qǐng)你設(shè)計(jì)一種方案,檢驗(yàn)?zāi)景宓膬蓷l直線邊緣 AB、CD 是否平行;
(2)若 AB∥CD,連接 BC,過點(diǎn) A 作 AM⊥BC 于 M,垂足為 M,畫出圖形,并寫出∠BCD 與∠BAM 的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過點(diǎn)C的直線DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數(shù);
(2)求證:CG平分OCD;
(3)當(dāng)O為多少度時(shí),CD平分OCF,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(﹣3,0),B(0,4),C(1,m),當(dāng)△ABC是直角三角形時(shí),m的值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com