一個等腰三角形的三邊長分別為a=2x,b=x+1,c=3x-2,那么這個等腰三角形的三邊長分別是________.
2,2,1或4,3,4或3,
,
分析:題中已知條件沒有指出哪兩邊相等,故應(yīng)該分情況進行分析,從而得到答案.
解答:當a=b時,2x=x+1,解得x=1,即三邊長為2,2,1;
當a=c時,2x=3x-2,解得x=2,即三邊長4,3,4;
當b=c時,x+1=3x-2,解得x=
,即三邊長3,
,
.
故填2,2,1,或4,3,4或3,
,
.
點評:本題考查了等腰三角形的性質(zhì)和三角形的三邊關(guān)系;已知沒有明確腰和底邊的題目一定要想到兩種情況,分類進行討論,還應(yīng)驗證各種情況是否能構(gòu)成三角形進行解答,這點非常重要,也是解題的關(guān)鍵.