已知直角三角形三邊長(zhǎng)分別為3,4,m,則m=             
5或

試題分析:根據(jù)勾股定理結(jié)合直角三角形的性質(zhì)分類討論即可.
當(dāng)4為直角邊時(shí),
當(dāng)4為斜邊時(shí),

點(diǎn)評(píng):本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握勾股定理,即可完成.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,點(diǎn)A,F(xiàn),C,D在同一直線上,點(diǎn)B和點(diǎn)E分別在直線AD的兩側(cè),且AB=DE,∠A=∠D,AF=DC.
 
(1)求證:四邊形BCEF是平行四邊形;
(2)若∠ABC=90°,AB=4,BC=3,當(dāng)AF為何值時(shí),四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知△ABC≌△DEF,且∠A=30°,∠E=75°,則∠F=         .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,中,垂直平分,為垂足交.

(1)若,求的度數(shù);
(2)若,的周長(zhǎng)是,求的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:計(jì)算題

(8分)如圖:△ABC中,AD是高,CE是中線,G是CE的中點(diǎn),DG⊥CE,G為垂足。

請(qǐng)說(shuō)明下列結(jié)論成立的理由:
(1)DC=BE ; (2)∠B=2∠BCE 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分)有一張長(zhǎng)9cm,寬3cm的矩形紙片,如圖所示,把它折疊使D點(diǎn)與B點(diǎn)重合,你能求出DE,EF的長(zhǎng)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:計(jì)算題

數(shù)學(xué)課上,張老師出示了問題:如圖1,△ABC是等邊三角形,點(diǎn)D是邊BC的中點(diǎn).,且DE交△ABC外角的平分線CE于點(diǎn)E,求證:AD=DE.
經(jīng)過思考,小明展示了一種正確的解題思路:取AB的中點(diǎn)M,連接MD,則△BMD是等邊三角形,易證△AMD≌△DCE,所以AD=DE.在此基礎(chǔ)上,同學(xué)們作了進(jìn)一步的研究:

(1)小穎提出:如圖2,如果把“點(diǎn)D是邊BC的中點(diǎn)”改為“點(diǎn)D是邊BC上(除B,C外)的任意一點(diǎn)”,其它條件不變,那么結(jié)論“AD=DE”仍然成立,你認(rèn)為小穎的觀點(diǎn)正確嗎?如果正確,寫出證明過程;如果不正確,請(qǐng)說(shuō)明理由;
(2)小亮提出:如圖3,點(diǎn)D是BC的延長(zhǎng)線上(除C點(diǎn)外)的任意一點(diǎn),其他條件不變,結(jié)論“AD=DE”仍然成立.你認(rèn)為小華的觀點(diǎn)          (填“正確”或“不正確”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

國(guó)慶60周年閱兵式上,向世界展示了一種新型導(dǎo)彈―“紅-九地空導(dǎo)彈”.它是我國(guó)自行研制的遠(yuǎn)程防空導(dǎo)彈,集美俄技術(shù)于一身,以攔截飛機(jī)為主,同時(shí)具有很強(qiáng)的攔截短程彈道導(dǎo)彈的能力.10枚“紅-九地空導(dǎo)彈”(每枚底面的直徑均為0.4m)以如圖方式堆放,為了防雨,需要搭建防雨棚,這個(gè)防雨棚的最低高度應(yīng)為多少米(精確到0.1m)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖等于 (      )

                      

查看答案和解析>>

同步練習(xí)冊(cè)答案