【題目】如圖,∠C=90°,AD平分∠BAC,DE⊥AB于點(diǎn)E,有下列結(jié)論:①CD=ED ;②AC+ BE= AB ;③DA平分∠CDE ;④∠BDE =∠BAC;⑤=AB:AC.其中結(jié)論正確的個(gè)數(shù)有()
A.5個(gè)B.4個(gè)
C.3個(gè)D.2個(gè)
【答案】A
【解析】
由在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E.可得CD=DE,繼而可得∠ADC=∠ADE,又由角平分線的性質(zhì),證得AE=AD,由等角的余角相等,可證得∠BDE=∠BAC,由三角形的面積公式,可證得S△ABD:S△ACD=AB:AC.
解:∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,
∴CD=ED,
故①正確;
∴∠CDE=90°∠BAD,∠ADC=90°∠CAD,
∴∠ADE=∠ADC,
即AD平分∠CDE,
故④正確;
∴AE=AC,
∴AB=AE+BE=AC+BE,
故②正確;
∵∠BDE+∠B=90°,∠B+∠BAC=90°,
∴∠BDE=∠BAC,
故③正確;
∵S△ABD=ABDE,S△ACD=ACCD,
∵CD=ED,
∴S△ABD:S△ACD=AB:AC,
故⑤正確.
綜上所述,結(jié)論正確的是①②③④⑤共5個(gè)
故答案為:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點(diǎn)F,若BC恰好平分∠ABF,AE=2BF.給出下列四個(gè)結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)的趣味無處不在,在學(xué)習(xí)數(shù)學(xué)的過程中,小明發(fā)現(xiàn)了有規(guī)律的等式:
;
;
;
;
……
(1)從計(jì)算過程中找出規(guī)律,可知:
① ;
② =.
(2)計(jì)算:(結(jié)果用含n的式子表示)
(3)對于算式:
①計(jì)算出算式的值(結(jié)果用乘方表示);
②直接寫出結(jié)果的個(gè)位數(shù)字是幾?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn).△ABC的邊BC在x軸上,A、C兩點(diǎn)的坐標(biāo)分別為A(0,m)、C(n,0),B(﹣5,0),且,點(diǎn)P從B出發(fā),以每秒2個(gè)單位的速度沿射線BO勻速運(yùn)動,設(shè)點(diǎn)P運(yùn)動時(shí)間為t秒.
(1)求A、C兩點(diǎn)的坐標(biāo);
(2)連接PA,用含t的代數(shù)式表示△POA的面積;
(3)當(dāng)P在線段BO上運(yùn)動時(shí),是否存在一點(diǎn)P,使△PAC是等腰三角形?若存在,請寫出滿足條件的所有P點(diǎn)的坐標(biāo)并求t的值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,是內(nèi)角的平分線,是外角的平分線,是外角的平分線,以下結(jié)論不正確的是( )
A.B.
C.D.平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△A'B'C'關(guān)于直線l對稱,下列結(jié)論:①△ABC≌△A'B'C' ;②∠BAC=∠B'A'C';③直線l不一定垂直平分線段CC';④直線BC與B'C'的交點(diǎn)一定在直線l上.其中正確的是________ (填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,OB和OC分別平分∠ABC和∠ACB,過O作DE∥BC,分別交AB、AC于點(diǎn)D、E,若DE=5,BD=3,則線段CE的長為( 。
A. 3 B. 1 C. 2 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點(diǎn),,與軸交于點(diǎn),直線經(jīng)過,兩點(diǎn).
求拋物線的解析式;
在上方的拋物線上有一動點(diǎn).
①如圖,當(dāng)點(diǎn)運(yùn)動到某位置時(shí),以,為鄰邊的平行四邊形第四個(gè)頂點(diǎn)恰好也在拋物線上,求出此時(shí)點(diǎn)的坐標(biāo);
②如圖,過點(diǎn),的直線交于點(diǎn),若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】夾在兩條平行線間的正方形ABCD、等邊三角形DEF如圖所示,頂點(diǎn)A、F分別在兩條平行線上.若A、D、F在一條直線上,則∠1與∠2的數(shù)量關(guān)系是( 。
A. ∠1+∠2=60° B. ∠2﹣∠1=30° C. ∠1=2∠2. D. ∠1+2∠2=90°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com