如圖,已知E為等腰△ABC的底邊BC上一動(dòng)點(diǎn),過E作EF⊥BC交AB于D,交CA的延長(zhǎng)線于F,問:

(1) ∠F與∠ADF的關(guān)系怎樣?說明理由。

(2) 若E在BC延長(zhǎng)線上,其余條件不變,上題的結(jié)論是否成立?若不成立,說明理由;若成立,畫出圖形并給予證明。

解:(1)∠F=∠ADF。 理由是:

∵AB=AC

∴∠B=∠C

∵EF⊥BC

∴∠B+∠BDE=90°, ∠C+∠F=90°

∴∠BDE=∠F

∵∠ADF=∠BDE

∴∠ADF=∠F  (2)結(jié)論仍然成立

畫圖(略) …

證明方法同上(

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC為等腰直角三角形,D為斜邊AB上任意一點(diǎn),(不與點(diǎn)A、B重合),連接CD,作EC⊥DC,且EC=DC,連接AE,則∠EAC為
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,已知BC為等腰三角形紙片ABC的底邊,AD⊥BC,AD=BC.將此三角形紙片沿AD剪開,得到兩個(gè)三角形,若把這兩個(gè)三角形拼成一個(gè)平面四邊形,則能拼出互不全等的四邊形的個(gè)數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC為等腰直角三角形,D為斜邊BC的中點(diǎn),經(jīng)過點(diǎn)A、D的⊙O與邊AB、AC、BC分別相交于點(diǎn)E、F、M.對(duì)于如下五個(gè)結(jié)論:①∠FMC=45°;②AE+AF=AB;③
ED
EF
=
BA
BC
;④2BM2=BE•BA;⑤四邊形AEMF為矩形.其中正確結(jié)論的個(gè)數(shù)是( 。
A、2個(gè)B、3個(gè)C、4個(gè)D、5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC為等腰三角形,AB=AC,△EBD通過旋轉(zhuǎn)能與△ABC重合.
(1)旋轉(zhuǎn)中心是
 
;
(2)如果旋轉(zhuǎn)角恰好是△ABC底角度數(shù)的
12
,且AD=BD,那么旋轉(zhuǎn)角的大小是
 
度;
(3)△BDC是
 
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知ABC為等腰三角形紙片ABC底邊,將此三角形紙片對(duì)折,使腰AB、AC重合,折痕為AD,則折痕AD與底邊BC的關(guān)系是
垂直且平分
垂直且平分

查看答案和解析>>

同步練習(xí)冊(cè)答案