【題目】拋物線yx2向下平移2個(gè)單位長(zhǎng)度,所得拋物線是( 

A. y=(x+22B. y=(x22

C. yx22D. yx2+2

【答案】C

【解析】

根據(jù)平移規(guī)律求出平移后的拋物線的頂點(diǎn)坐標(biāo),然后利用頂點(diǎn)式解析式寫(xiě)出即可.

y=x2向下平移2個(gè)單位長(zhǎng)度,∴平移后的拋物線的頂點(diǎn)坐標(biāo)為(0,﹣2),∴y=x22

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)201410月的商品房均價(jià)約為15000/平方米,將15000用科學(xué)記數(shù)法表示為(

A. 1.5×104B. 1.5×105C. 0.15×104D. 0.15×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線與x軸交于A(-1,0),B(3,0),與y軸交于C(0,-3),頂點(diǎn)為點(diǎn)M.

(1)求拋物線的解析式及點(diǎn)M的坐標(biāo).

(2)點(diǎn)P是直線BC在y軸右側(cè)部分圖象上的動(dòng)點(diǎn),若點(diǎn)P,點(diǎn)C,點(diǎn)M所構(gòu)成的三角形與△AOC相似,求符合條件的P點(diǎn)坐標(biāo).

(3)過(guò)點(diǎn)C作CD∥AB,CD交拋物線于點(diǎn)D,點(diǎn)Q是線段CD上的一動(dòng)點(diǎn),作直線QN與線段AC交于點(diǎn)N,與x軸交于點(diǎn)E,且∠BQE=∠BDC,當(dāng)CN的值最大時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=x2-4x-5與x軸分別交于A、B(A在B的左邊),與y軸交于點(diǎn)C,直線AP與y軸正半軸交于點(diǎn)M,交拋物線于點(diǎn)P,直線AQ與y軸負(fù)半軸交于點(diǎn)N,交拋物線于點(diǎn)Q,且OM=ON,過(guò)P、Q作直線l

(1) 探究與猜想:

① 取點(diǎn)M(0,1),直接寫(xiě)出直線l的解析式

取點(diǎn)M(0,2),直接寫(xiě)出直線l的解析式

② 猜想:

我們猜想直線l的解析式y(tǒng)=kx+b中,k總為定值,定值k為_(kāi)_________,請(qǐng)取M的縱坐標(biāo)為n,驗(yàn)證你的猜想

(2) 如圖2,連接BP、BQ.若△ABP的面積等于△ABQ的面積的3倍,試求出直線l的解析式

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若∠A,∠B,∠C,∠D為四邊形ABCD的四個(gè)內(nèi)角,下列給出的是這四個(gè)內(nèi)角的比值,其中能使四邊形ABCD是平行四邊形的是(   )

A. 2∶3∶2∶3 B. 2∶3∶3∶2 C. 1∶2∶3∶4 D. 2∶2∶3∶3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)有三條直線a、b、c,下列說(shuō)法:①若ab,bc,則ac;②若ab,bc,則ac,其中正確的是(  )

A. 只有①

B. 只有②

C. ①②都正確

D. ①②都不正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知|a-2|+(b+3)2=0,則ba的值是(

A. -6 B. 6 C. -9 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列一元二次方程;

1x24x50

2)(x322x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算 2﹣22﹣23﹣24…﹣299+2100=

查看答案和解析>>

同步練習(xí)冊(cè)答案