在圖1中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連接FG和CG,裁掉△FAG和△CGB,可以發(fā)現(xiàn):如果先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,那么△CGB恰可以拼接到△CHD的位置.且拼接成的新四邊形FGCH恰是正方形.
(Ⅰ)請(qǐng)你類(lèi)比圖1的剪拼方法,在圖2(a<2b<2a)中畫(huà)出剪拼成一個(gè)新正方形的示意圖.
(Ⅱ)當(dāng)b>a時(shí),如圖3的圖形能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖中畫(huà)出剪拼的示意圖;若不能,簡(jiǎn)要說(shuō)明理由________.
作業(yè)寶

能拼成,如圖所示
分析:(Ⅰ)應(yīng)采用類(lèi)比的方法,使AG=EH,F(xiàn)G=GC進(jìn)而得出答案;
(Ⅱ)應(yīng)采用類(lèi)比的方法,使AG=EH,F(xiàn)G=GC進(jìn)而得出答案,注意無(wú)論等腰直角三角形的大小如何變化,BG永遠(yuǎn)等于等腰直角三角形斜邊的一半.
解答:(Ⅰ)如圖所示:剪拼方法如圖2,
(Ⅱ)如圖所示:剪拼方法如圖3,
注:圖3用其它剪拼方法能拼接成面積為a2+b2的正方形均給分.

點(diǎn)評(píng):本題考查學(xué)生的推理論證能力和動(dòng)手操作能力;運(yùn)用類(lèi)比方法作圖時(shí),應(yīng)根據(jù)范例抓住作圖的關(guān)鍵:作的線段的長(zhǎng)度與某條線段的比值,旋轉(zhuǎn)的三角形,連接的點(diǎn)都應(yīng)是相同的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果正方形網(wǎng)格中的每一個(gè)小正方形邊長(zhǎng)都是1,則每個(gè)小格的頂點(diǎn)叫做格點(diǎn).
(1)在圖1中,以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)三角形,使三角形的三邊長(zhǎng)分別為3、
5
、2
2
;
(2)在圖2中,線段AB的端點(diǎn)在格點(diǎn)上,請(qǐng)畫(huà)出以AB為一邊的三角形,使這個(gè)三角形的面積為6;(要求至少畫(huà)出3個(gè));
(3)在圖3中,△MNP的頂點(diǎn)M、N在格點(diǎn)上,P在小正方形的邊上,問(wèn)這個(gè)三角形的面積相當(dāng)于多少個(gè)小方格的面積?在你解出答案后,說(shuō)說(shuō)你的解題方法.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖12所示的8×8網(wǎng)格中,每個(gè)小正方形邊長(zhǎng)均為1,以這些小正方形的頂點(diǎn)為頂點(diǎn)的三角形稱(chēng)為格點(diǎn)三角形
【小題1】在圖12中以線段AB為一邊,點(diǎn)P為頂點(diǎn)且面積為6的格點(diǎn)三角形共有       個(gè);

【小題2】請(qǐng)你選擇(1)中的一個(gè)點(diǎn)P為位似中心,在圖12中畫(huà)出格點(diǎn)△A′B′P,使
△ABP與△A′B′P的位似比為2:1
【小題3】求tan∠PB′A′的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林鎮(zhèn)賚鎮(zhèn)賚鎮(zhèn)中學(xué)九年級(jí)下第一次綜合測(cè)試數(shù)學(xué)試卷(帶解析) 題型:解答題

在正方形ABCD中,過(guò)點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過(guò)翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.
【感知】如圖1,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),可得FG=FD.

【探究】如圖2,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),猜想FG與FD的數(shù)量關(guān)系,并說(shuō)明理由.

【應(yīng)用】在圖2中,當(dāng)AB=5,BE=3時(shí),利用探究結(jié)論,求FG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆河北石家莊初中畢業(yè)班教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖12所示的8×8網(wǎng)格中,每個(gè)小正方形邊長(zhǎng)均為1,以這些小正方形的頂點(diǎn)為頂點(diǎn)的三角形稱(chēng)為格點(diǎn)三角形
【小題1】在圖12中以線段AB為一邊,點(diǎn)P為頂點(diǎn)且面積為6的格點(diǎn)三角形共有       個(gè);

【小題2】請(qǐng)你選擇(1)中的一個(gè)點(diǎn)P為位似中心,在圖12中畫(huà)出格點(diǎn)△A′B′P,使
△ABP與△A′B′P的位似比為2:1
【小題3】求tan∠PB′A′的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆吉林鎮(zhèn)賚鎮(zhèn)賚鎮(zhèn)中學(xué)九年級(jí)下第一次綜合測(cè)試數(shù)學(xué)試卷(解析版) 題型:解答題

在正方形ABCD中,過(guò)點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過(guò)翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.

【感知】如圖1,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),可得FG=FD.

【探究】如圖2,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),猜想FG與FD的數(shù)量關(guān)系,并說(shuō)明理由.

【應(yīng)用】在圖2中,當(dāng)AB=5,BE=3時(shí),利用探究結(jié)論,求FG的長(zhǎng).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案