【題目】如圖,O是等邊△ABC內(nèi)一點,OA=3,OB=4OC=5,以點B為旋轉(zhuǎn)中心,將線段BO逆時針旋轉(zhuǎn)60°得到線段BO′,連接AO′.則下列結(jié)論:

①△BO′A可以由△BOC繞點B逆時針方向旋轉(zhuǎn)60°得到;

連接OO′,則OO′=4;

③∠AOB=150°

④S四邊形AOBO′=6+4

其中正確的結(jié)論是

【答案】①②③④

【解析】

試題解析:如圖,連接OO′

∵△ABC為等邊三角形,

∴∠ABC=60°,AB=CB

由題意得:∠OBO′=60°,OB=O′B

∴△OBO′為等邊三角形,∠ABO′=∠CBO,

∴OO′=OB=4∠BOO′=60°,

選項正確;

△ABO′△CBO中,

∴△ABO′≌△CBOSAS),

∴AO′=OC=5,

△BO′A可以由△BOC繞點B逆時針方向旋轉(zhuǎn)60°得到,

選項正確;

△AOO′中,∵32+42=52,

∴△AOO′為直角三角形,

∴∠AOO′=90°,∠AOB=90°+60°=150°

選項正確;

∵S四邊形AOBO′=,

選項正確.

綜上所述,正確選項為①②③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①表示一個時鐘的鐘面垂直固定于水平桌面上,其中分針上有一點,當(dāng)鐘面顯示330分時,分針垂直于桌面,點距離桌面的高度為公分,圖②表示鐘面顯示345時,點距桌面的高度為公分,若鐘面顯示355時,點距離桌面的高度為__________公分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點分別在反比例函數(shù),的圖象上.若,則的值為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是通過折疊正方形紙片得到等邊三角形的步驟取一張正方形的紙片進(jìn)行折疊,具體操作過程如下:

第一步:如圖,先把正方形ABCD對折,折痕為MN;

第二步點E在線段MD上,將△ECD沿EC翻折,點D恰好落在MN上,記為點P,連接BP可得△BCP是等邊三角形

問題:在折疊過程中,可以得到PB=PC;依據(jù)是________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC,∠ACB=120°,P是線段CB上一動點(與點C,B不重合),連接AP,延長BC至點Q,使得∠PAC=QAC,過點Q作射線QH交線段APH,交AB于點M,使得∠AHQ=60°.

1)若∠PAC,求∠AMQ的大小(用含α的式子表示);

2)用等式表示線段QCBM之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A在一次函數(shù)yx位于第一象限的圖象上運(yùn)動,點Bx軸正半軸上運(yùn)動,在AB右側(cè)以它為邊作矩形ABCD,且AB2,AD1,則OD的最大值是( 。

A.B.+2C.+2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtACB中,∠ACB90°,點DAB上一點.

1)如圖1,若CDAB,求證:CD2ADDB;

2)如圖2,若ACBC,EFCDH,EFBC交于E,與AC交于F,且,求的值;

3)如圖3,若ACBC,點HCD上,且∠AHD45°,CH3DH,直接寫出tanACH的值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD的邊AD的延長線上截取DEADFAE延長線上的一點,連結(jié)BDCE、BF分別交CE、CDGH

求證:(1ABD≌△DCE

2CECGDFAD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:探究函數(shù)yx+ 的圖象和性質(zhì).

小華根據(jù)學(xué)習(xí)函數(shù)的方法和經(jīng)驗,進(jìn)行了如下探究,下面是小華的探究過程,請補(bǔ)充完整:

1)函數(shù)的自變量x的取值范圍是:____

2)如表是yx的幾組對應(yīng)值,請將表格補(bǔ)充完整:

x

3

2

1

1

2

3

y

3

3

3

4

4

3

3)如圖,在平面直角坐標(biāo)系中描點并畫出此函數(shù)的圖象;

4)進(jìn)一步探究:結(jié)合函數(shù)的圖象,寫出此函數(shù)的性質(zhì)(一條即可).

查看答案和解析>>

同步練習(xí)冊答案