【題目】如圖,在四邊形中,、為對角線,點、、、分別為、、、邊的中點,下列說法:
①當時,、、、四點共圓.
②當時,、、、四點共圓.
③當且時,、、、四點共圓.
其中正確的是( )
A. ①② B. ①③ C. ②③ D. ②③
【答案】C
【解析】
連接EM、MF、FN、NE,連接EF、MN,交于點O,利用三角形中位線定理可證到四邊形ENFM是平行四邊形;然后根據(jù)條件判定四邊形ENFM的形狀,就可知道M、E、N、F四點是否共圓.
解:連接EM、MF、FN、NE,連接EF、MN,交于點O,如圖所示.
∵點M、E、N、F分別為AD、AB、BC、CD邊的中點,
∴EM∥BD∥NF,EN∥AC∥MF,EM=NF=BD,EN=MF=AC.
∴四邊形ENFM是平行四邊形.
①當AC=BD時,
則有EM=EN,
所以平行四邊形ENFM是菱形.
而菱形的四個頂點不一定共圓,
故①不一定正確.
②當AC⊥BD時,
由EM∥BD,EN∥AC可得:EM⊥EN,即∠MEN=90°.
所以平行四邊形ENFM是矩形.
則有OE=ON=OF=OM.
所以M、E、N、F四點共圓,
故②正確.
③當AC=BD且AC⊥BD時,
同理可得:四邊形ENFM是正方形.
則有OE=ON=OF=OM
所以M、E、N、F四點共圓,
故③正確.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】一根竹竿長米,先像靠墻放置,與水平夾角為,為了減少占地空間,現(xiàn)將竹竿像放置,與水平夾角為,則竹竿讓出多少水平空間( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】()如圖①已知四邊形中,,BC=b,,求:
①對角線長度的最大值;
②四邊形的最大面積;(用含,的代數(shù)式表示)
()如圖②,四邊形是某市規(guī)劃用地的示意圖,經測量得到如下數(shù)據(jù):,,,,請你利用所學知識探索它的最大面積(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,BC=4,⊙D的半徑為1.現(xiàn)將一個直角三角板的直角頂點與矩形的對稱中心O重合,繞著O點轉動三角板,使它的一條直角邊與⊙D切于點H,此時兩直角邊與AD交于E,F(xiàn)兩點,則tan∠EFO的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D,AD交⊙O于點E.
(1) 求證:AC平分∠DAB;
(2) 連接BE交AC于點F,若cos∠CAD=,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:在中,、分別平分與它的鄰補角,
于,于,直線分別交、于、.
求證:四邊形為矩形;
試猜想與的關系,并證明你的猜想;
如果四邊形是菱形,試判斷的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別延長□ABCD的邊CD,AB到E,F,使DE=BF,連接EF,分別交AD,BC于G,H,連結CG,AH.
求證:CG∥AH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一斜坡坡頂處的同一水平線上有一古塔,為測量塔高,數(shù)學老師帶領同學在坡腳處測得斜坡的坡角為,且,塔頂處的仰角為,他們沿著斜坡攀行了米,到達坡頂處,在處測得塔頂的仰角為.
(1)求斜坡的高度;
(2)求塔高.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com