【題目】如圖,在四邊形中,為對角線,點、分別為、、邊的中點,下列說法:

時,、、四點共圓.

時,、四點共圓.

時,、、、四點共圓.

其中正確的是(

A. ①② B. ①③ C. ②③ D. ②③

【答案】C

【解析】

連接EM、MF、FN、NE,連接EF、MN,交于點O,利用三角形中位線定理可證到四邊形ENFM是平行四邊形;然后根據(jù)條件判定四邊形ENFM的形狀,就可知道M、E、N、F四點是否共圓.

解:連接EM、MF、FN、NE,連接EF、MN,交于點O,如圖所示.

∵點M、E、N、F分別為AD、AB、BC、CD邊的中點,

∴EM∥BD∥NF,EN∥AC∥MF,EM=NF=BD,EN=MF=AC.

∴四邊形ENFM是平行四邊形.

①當AC=BD時,

則有EM=EN,

所以平行四邊形ENFM是菱形.

而菱形的四個頂點不一定共圓,

故①不一定正確.

②當AC⊥BD時,

EM∥BD,EN∥AC可得:EM⊥EN,即∠MEN=90°.

所以平行四邊形ENFM是矩形.

則有OE=ON=OF=OM.

所以M、E、N、F四點共圓,

故②正確.

③當AC=BDAC⊥BD時,

同理可得:四邊形ENFM是正方形.

則有OE=ON=OF=OM

所以M、E、N、F四點共圓,

故③正確.

故選:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】一根竹竿長米,先像靠墻放置,與水平夾角為,為了減少占地空間,現(xiàn)將竹竿像放置,與水平夾角為,則竹竿讓出多少水平空間(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】)如圖①已知四邊形中,,BC=b,,求:

①對角線長度的最大值;

②四邊形的最大面積;(用含的代數(shù)式表示)

)如圖②,四邊形是某市規(guī)劃用地的示意圖,經測量得到如下數(shù)據(jù):,,,請你利用所學知識探索它的最大面積(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=2,BC=4,D的半徑為1.現(xiàn)將一個直角三角板的直角頂點與矩形的對稱中心O重合,繞著O點轉動三角板,使它的一條直角邊與D切于點H,此時兩直角邊與AD交于E,F(xiàn)兩點,則tanEFO的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在以AB為直徑的⊙O上,AD與過點C的切線垂直,垂足為點D,AD⊙O于點E

1) 求證:AC平分∠DAB;

2) 連接BEAC于點F,若cos∠CAD,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形的邊長為,在各邊上順次截取,則邊形________,面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在中,、分別平分與它的鄰補角,

,直線分別交、、

求證:四邊形為矩形;

試猜想的關系,并證明你的猜想;

如果四邊形是菱形,試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別延長□ABCD的邊CD,ABE,F,使DE=BF,連接EF,分別交AD,BCG,H,連結CG,AH.

求證:CG∥AH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一斜坡坡頂處的同一水平線上有一古塔,為測量塔高,數(shù)學老師帶領同學在坡腳處測得斜坡的坡角為,且,塔頂處的仰角為,他們沿著斜坡攀行了米,到達坡頂處,在處測得塔頂的仰角為

(1)求斜坡的高度;

(2)求塔高

查看答案和解析>>

同步練習冊答案