如圖,A,B,C是新建的三個居民小區(qū),我們已經(jīng)在到三個小區(qū)距離相等的地方修建了一所學(xué)校,現(xiàn)規(guī)劃修建居民小區(qū)D,其要求是:

(1)到學(xué)校的距離與其它小區(qū)到學(xué)校的距離一樣;

(2)控制人口密度,有利于生態(tài)環(huán)境建設(shè),試確定居民小區(qū)D的位置.

 

 

 

【答案】

 解:到學(xué)校的距離與其它小區(qū)到學(xué)校的距離一樣,則應(yīng)該在以AB、BC垂直平分線的交點P為圓心,PA長為半徑的圓上,但為了控制人口密度,最好位于線段BC的下方D點位置(圓P交BC的垂直平分線的交點).

【解析】到A,B的距離相等的點在AB的垂直平分線上,到B,C距離相等的點,在BC的垂直平分線上.兩線交于點P,小區(qū)D的位置應(yīng)在以P為圓心,PA長為半徑的圓上,但為了控制人口密度,最好位于線段BC的下方.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,某堤壩的橫截面是梯形ABCD,背水坡AD的坡度i(即tanα)為1:1.2,壩高為5米,現(xiàn)為了提高堤壩的防洪抗洪能力,市防汛指揮部決定加固堤壩,要求壩頂CD加寬1米,形成新的背水坡EF,其坡度為1:1.4,已知堤壩總長度為4000米.
(1)求完成該工程需要多少土方?
(2)該工程由甲、乙兩個工程隊同時合作完成.按原計劃需要20天.準(zhǔn)備開工前接到上級通知,汛期可能提前,要求兩個工程隊提高工作效率,甲隊工作效率精英家教網(wǎng)提高30%,乙隊工作效率提高40%,結(jié)果提前5天完成.問這兩個工程隊原計劃每天各完成多少土方?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一人行天橋的高是10米,坡面CA的坡角為30°,為了方便行人推車過橋,市政部門決定降低坡度,使新坡面CD的坡角為18°.
精英家教網(wǎng)
(1)求新坡長CD;(精確到0.01米)
(2)求原坡腳向外延伸后DA的長;(精確到0.01米)
(3)若需留DE為4米的人行道,問離原坡腳A處15米的花壇E是否需要拆除?
(參考數(shù)據(jù)sin18°=0.309;cos18°=0.951;tan18°=0.325)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、正在改造的人行道工地上,有兩種鋪設(shè)路面材料:一種是長為acm、寬為bcm的矩形板材(如圖1),另一種是邊長為ccm的正方形地磚(如圖2).
(1)用多少塊如圖2所示的正方形地磚能拼出一個新的正方形?(只要寫出一個符合條件的答案即可),并寫出新正方形的面積;
(2)現(xiàn)用如圖1所示的四塊矩形板材鋪成一個大矩形(如圖3)或大正方形(如圖4),中間分別空出一個小矩形和一個小正方形.
①試比較中間的小矩形和中間的小正方形的面積哪個大?大多少?
②如圖4,已知大正方形的邊長比中間小正方形的邊長多20cm,面積大3200cm2.如果選用如圖2所示的正方形地磚(邊長為20cm)鋪設(shè)圖4中間的小正方形部分,那么能否做到不用切割地磚就可直接密鋪(縫隙忽略不計)呢?若能,請求出密鋪所需地磚的塊數(shù);若不能,至少要切割幾塊如圖2的地磚?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•六盤水)假期,六盤水市教育局組織部分教師分別到A、B、C、D四個地方進(jìn)行新課程培訓(xùn),教育局按定額購買了前往四地的車票.如圖1是未制作完成的車票種類和數(shù)量的條形統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

(1)若去C地的車票占全部車票的30%,則去C地的車票數(shù)量是
30
30
張,補(bǔ)全統(tǒng)計圖.
(2)若教育局采用隨機(jī)抽取的方式分發(fā)車票,每人一張(所有車票的形狀、大小、質(zhì)地完全相同且充分洗勻),那么余老師抽到去B地的概率是多少?
(3)若有一張去A地的車票,張老師和李老師都想要,決定采取旋轉(zhuǎn)轉(zhuǎn)盤的方式來確定.其中甲轉(zhuǎn)盤被分成四等份且標(biāo)有數(shù)字1、2、3、4,乙轉(zhuǎn)盤分成三等份且標(biāo)有數(shù)字7、8、9,如圖2所示.具體規(guī)定是:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)指針指向的兩個數(shù)字之和是偶數(shù)時,票給李老師,否則票給張老師(指針指在線上重轉(zhuǎn)).試用“列表法”或“樹狀圖”的方法分析這個規(guī)定對雙方是否公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

解決下面問題:
如圖,在△ABC中,∠A是銳角,點D,E分別在AB,AC上,且∠DCB=∠EBC=
12
∠A,BE與CD相交于點O,探究BD與CE之間的數(shù)量關(guān)系,并證明你的結(jié)論.

小新同學(xué)是這樣思考的:
在平時的學(xué)習(xí)中,有這樣的經(jīng)驗:假如△ABC是等腰三角形,那么在給定一組對應(yīng)條件,如圖a,BE,CD分別是兩底角的平分線(或者如圖b,BE,CD分別是兩條腰的高線,或者如圖c,BE,CD分別是兩條腰的中線)時,依據(jù)圖形的軸對稱性,利用全等三角形和等腰三角形的有關(guān)知識就可證得更多相等的線段或相等的角.這個問題也許可以通過添加輔助線構(gòu)造軸對稱圖形來解決.請參考小新同學(xué)的思路,解決上面這個問題.

查看答案和解析>>

同步練習(xí)冊答案