【題目】平行于x軸的直線分別與一次函數(shù)y=-x+3和二次函數(shù)y= x2 -2x-3的圖象交于A(x1,y1),B(x2,y2),C(x3,y3)三點,且x1<x2<x3,設(shè)m= x1+x2+x3,則m的取值范圍是____________

【答案】m<0

【解析】

結(jié)合函數(shù)的圖象,求出直線和拋物線的交點(-2,5)和(3,0),與這兩個圖形的交點坐標(biāo)滿足x1<x2<x3,根據(jù)根與系數(shù)關(guān)系可求得.

,

, ,

所以直線與拋物線的交點是(-2,5)和(3,0),二次函數(shù)的對稱軸為x=1

因為A(x1,y1),B(x2,y2),C(x3,y3)三點,且x1<x2<x3

如圖則l直線只能在直線l1上方,則x2+ x3=21=2

x1<-2,所以x1+x2+x3<0

即:m<0

故正確答案為:m<0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展主題為環(huán)廣西公路自行車世界巡回賽的專題調(diào)查活動,取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為非常了解”、“比較了解”、“基本了解”、“不太了解四個等級,分別記作A、B、C、D;并根據(jù)調(diào)查結(jié)果繪制成如圖所示不完整的統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:

(1)請求出本次被調(diào)查的學(xué)生共多少人,并將條形統(tǒng)計圖補(bǔ)充完整.

(2)估計該校1500名學(xué)生中“C等級的學(xué)生有多少人?

(3)在“B等級的學(xué)生中,初三學(xué)生共有4人,其中13女,在這4個人中,隨機(jī)選出2人進(jìn)行采訪,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請用列表法或樹狀圖的方法求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在正方形ABCD中,點E、F分別在CDBC上,且BF=CE,連接BEAF相交于點G,則下列結(jié)論不正確的是( )

ABE=AF B∠DAF=∠BEC C∠AFB+∠BEC=90° DAG⊥BE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O交AB于點D,過點D作⊙O的切線,與邊BC交于點E,若AD=, AC=3.則DE長為( 。

A. B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A 市氣象站測得臺風(fēng)中心在 A 市正東方向800 千米的B處,以50千米/時的速度向北偏西60 BF方向移動,距臺風(fēng)中心500千米范圍內(nèi)是受臺風(fēng)影響的區(qū)域.

1A市是否會受到臺風(fēng)的影響?寫出你的結(jié)論并給予說明;

2)如果A市受這次臺風(fēng)影響,那么受臺風(fēng)影響的時間有多長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2﹣4x+c經(jīng)過點A(0,﹣6)和B(3,﹣9).

(1)求出拋物線的解析式;

(2)寫出拋物線的對稱軸方程及頂點坐標(biāo);

(3)點P(m,m)與點Q均在拋物線上(其中m>0),且這兩點關(guān)于拋物線的對稱軸對稱,求m的值及點Q的坐標(biāo);

(4)在滿足(3)的情況下,在拋物線的對稱軸上尋找一點M,使得QMA的周長最小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸的兩個交點分別為(﹣10),(30),對于下列結(jié)論:①2a+b=0;②abc0;③a+b+c0;④當(dāng)x1時,yx的增大而減;其中正確的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲班56人,其中身高在160厘米以上的男同學(xué)10人,身高在160厘米以上的女同學(xué)3人,乙班80人,其中身高在160厘米以上的男同學(xué)20人,身高在160厘米以上的女同學(xué)8人.如果想在兩個班的160厘米以上的女生中抽出一個作為旗手,在哪個班成功的機(jī)會大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小俊在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進(jìn)12米到達(dá)C處,又測得樓頂E的仰角為60°,求樓EF的高度.(結(jié)果精確到0.1米)

查看答案和解析>>

同步練習(xí)冊答案