【題目】能判定四邊形是平行四邊形的是( )
A.AB∥CD,B. AB∥CD,
C.,D.,
【答案】B
【解析】
平行四邊形的五種判定方法分別是:(1)兩組對(duì)邊分別平行的四邊形是平行四邊形;(2)兩組對(duì)邊分別相等的四邊形是平行四邊形;(3)一組對(duì)邊平行且相等的四邊形是平行四邊形;(4)兩組對(duì)角分別相等的四邊形是平行四邊形;(5)對(duì)角線互相平分的四邊形是平行四邊形.根據(jù)平行四邊形的5種判定定理逐一驗(yàn)證即可.
解:如下圖,
A.根據(jù)一組對(duì)邊平行,另一組對(duì)邊相等不能判定四邊形ABCD是平行四邊形,故該選項(xiàng)錯(cuò)誤;
B.∵AB∥CD,
∴∠B+∠C=180°,
∵∠B=∠D,
∴∠C+∠D=180°,
∴AD∥BC,
∴四邊形ABCD是平行四邊形(兩組對(duì)邊分別平行的四邊形是平行四邊形),故該選項(xiàng)正確;
C.根據(jù)平行四邊形的判定定理,該選項(xiàng)無法判斷四邊形是平行四邊形,故該選項(xiàng)錯(cuò)誤;
D.根據(jù)平行四邊形的判定定理,該選項(xiàng)無法判斷四邊形是平行四邊形,故該選項(xiàng)錯(cuò)誤.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如圖1,若點(diǎn)P是⊙O外的一點(diǎn),線段PO交⊙O于點(diǎn)A,則PA長(zhǎng)是點(diǎn)P與⊙O上各點(diǎn)之間的最短距離.
證明:延長(zhǎng)PO交⊙O于點(diǎn)B,顯然PB>PA.
如圖2,在⊙O上任取一點(diǎn)C(與點(diǎn)A,B不重合),連結(jié)PC,OC.
∵PO<PC+OC,
且PO=PA+OA,OA=OC,
∴PA<PC
∴PA 長(zhǎng)是點(diǎn)P與⊙O上各點(diǎn)之間的最短距離.
由此可以得到真命題:圓外一點(diǎn)與圓上各點(diǎn)之間的最短距離是這點(diǎn)到圓心的距離與半徑的差.請(qǐng)用上述真命題解決下列問題.
(1)如圖3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC為直徑的半圓交AB于D,P是 上的一個(gè)動(dòng)點(diǎn),連接AP,則AP長(zhǎng)的最小值是 .
(2)如圖4,在邊長(zhǎng)為2的菱形ABCD中,∠A=60°,M是AD邊的中點(diǎn),點(diǎn)N是AB邊上一動(dòng)點(diǎn),將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,①求線段A’M的長(zhǎng)度; ②求線段A′C長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料并回答下列問題:
在平面直角坐標(biāo)系 xOy 中, 點(diǎn) P x, y 經(jīng)過 f 變換得到點(diǎn) P x, y , 變換記作f x, y x, y, 其中,例如,當(dāng)a=1,b=1時(shí),則點(diǎn)(-1,2)經(jīng)過f變換,,即.
(1)當(dāng) a 1, b 1時(shí),則 f 0, 1 .
(2)若 f 2,3 4, 2 ,求 a 和b 的值.
(3)若象限內(nèi)點(diǎn) P x, y 的橫縱坐標(biāo)滿足 y 3x ,點(diǎn) P 經(jīng)過 f 變換得到點(diǎn) P x, y,若點(diǎn) P 與點(diǎn) P重合,求 a 和b 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18 ℃的條件下生長(zhǎng)最快的新品種.如圖是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線y=的一部分.請(qǐng)根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18 ℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD中,AB=4,將紙片折疊,使頂點(diǎn)B落在邊AD上的點(diǎn)為E,折痕的一端G點(diǎn)在BC上(BG<GC),另一端F落在矩形的邊上,BG=5.
(1)請(qǐng)你在備用圖中畫出滿足條件的圖形;
(2)求出AF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).
(1)四邊形EFGH的形狀是什么,并證明你的結(jié)論.
(2)當(dāng)四邊形ABCD的對(duì)角線滿足什么條件時(shí),四邊形EFGH是矩形;并利用你給的條件加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)為角平分線交點(diǎn), ,,,將平移使其頂點(diǎn)與重合,則圖中陰影部分的周長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一張矩形紙片ABCD中,AB=4,BC=8,點(diǎn)E,F分別在AD,BC上,將紙片ABCD沿直線EF折疊,點(diǎn)C落在AD上的一點(diǎn)H處,點(diǎn)D落在點(diǎn)G處,有以下四個(gè)結(jié)論:
①四邊形CFHE是菱形;②線段BF的取值范圍為3≤BF≤4;
③EC平分∠DCH;④當(dāng)點(diǎn)H與點(diǎn)A重合時(shí),EF=.
以上結(jié)論中,你認(rèn)為正確的有______.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)120°得到△AB'C'(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B',點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C'),連接BB',若AC'∥BB',則∠C'AB'的度數(shù)為( )
A.20°B.30°C.40°D.50°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com