【題目】如圖1,在線段AB上找一點C,C把AB分為AC和CB兩段,其中BC是較小的一段,如果BCAB=AC2,那么稱線段AB被點C黃金分割.為了增加美感,黃金分割經(jīng)常被應用在繪畫、雕塑、音樂、建筑等藝術領域.如圖2,在“附中博識課程中”,小白菜們沿著紫禁城的中軸線,從內(nèi)金水橋走到了太和殿,領略了古代建筑的宏偉.太和門位于太和殿與內(nèi)金水橋之間靠近內(nèi)金水橋的一側,三個建筑的位置關系滿足黃金分割.已知太和殿到內(nèi)金水橋的距離約為100丈,設太和門到太和殿之間的距離為x丈,要求x,則可列方程為________________.
科目:初中數(shù)學 來源: 題型:
【題目】為支援困山區(qū),某學校愛心活動小組準備用籌集的資金購買A、B兩種型號的學習用品.已知B型學習用品的單價比A型學習用品的單價多10元,用180元購買B型學習用品與用120元購買A型學習用品的件數(shù)相同.
(1)求A,B兩種學習用品的單價各是多少元;
(2)若購買A、B兩種學習用品共1000件,且總費用不超過28000元,則最多購買B型學習用品多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABM和Rt△ADN的斜邊分別為正方形的邊AB和AD,其中AM=AN.
(1)求證:Rt△ABM≌Rt△AND
(2)線段MN與線段AD相交于T,若AT=,求的值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BC⊥y軸,BC<OA,點A,點C分別在x軸、y軸的正半軸上,D是線段BC上一點,BD=OA=,AB=3,∠OAB=45°,E,F(xiàn)分別是線段OA,AB上的兩動點,且始終保持∠DEF=45°.將△AEF沿一條邊翻折,翻折前后兩個三角形組成的四邊形為菱形,則線段OE的值為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,點O為AB中點,點P為直線BC上的動點(不與點B、點C重合),連接OC、OP,將線段OP繞點P順時針旋轉60°,得到線段PQ,連接BQ.
(1)如圖1,當點P在線段BC上時,請直接寫出線段BQ與CP的數(shù)量關系.
(2)如圖2,當點P在CB延長線上時,(1)中結論是否成立?若成立,請加以證明;若不成立,請說明理由;
(3)如圖3,當點P在BC延長線上時,若∠BPO=15°,BP=4,請求出BQ的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(知識鏈接)連結三角形兩邊中點的線段,叫做三角形的中位線.
(動手操作)小明同學在探究證明中位線性質(zhì)定理時,是沿著中位線將三角形剪開然后將它們無縫隙、無重疊的拼在一起構成平行四邊形,從而得出:三角形中位線平行于第三邊且等于第三邊的一半.
(性質(zhì)證明)小明為證明定理,他想利用三角形全等、平行四邊形的性質(zhì)來證明.請你幫他完成解題過程(要求:畫出圖形,根據(jù)圖形寫出已知、求證和證明過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題呈現(xiàn):阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.下面是運用“截長法”證明CD=AB+BD的部分證明過程.
證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG
∵M是的中點,
∴MA=MC
……
請按照上面的證明思路,寫出該證明的剩余部分;
實踐應用:
(1)如圖3,已知△ABC內(nèi)接于⊙O,BC>AB>AC,D是的中點,依據(jù)阿基米德折弦定理可得圖中某三條線段的等量關系為BE=CE+ACBE=CE+AC;
(2)如圖4,已知等腰△ABC內(nèi)接于⊙O,AB=AC,D為上一點,連接DB,∠ACD=45°,AE⊥CD于點E,△BCD的周長為4+2,BC=2,請求出AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若一組數(shù)據(jù)a1,a2,a3的平均數(shù)為4,方差為3,那么數(shù)據(jù)a1+2,a2+2,a3+2的平均數(shù)和方差分別是( 。
A. 4,3B. 6,3C. 3,4D. 6,5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、P是上兩點,AB=13,AC=5,
(1)如圖(1),若點P是的中點,求PA的長;
(2)如圖(2),若點P是的中點,求PA得長 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com