【題目】如圖,在矩形ABCD中對角線AC,BD相交于點(diǎn)F,延長BC到點(diǎn)E,使得四邊形ACED是一個(gè)平行四邊形,平行四邊形對角線AE交BD,CD分別為點(diǎn)G和點(diǎn)H.
(1)證明:DG2=FG·BG;
(2)若AB=5,BC=6,則線段GH的長度.
【答案】(2)見解析(2)
【解析】
(1)由已知可證得△ADG∽△EBG,△AGF∽△EGD,根據(jù)相似三角形的對應(yīng)邊成比例即可得到DG2=FG·BG;
(2)由已知可得到DH,AH的長,又因?yàn)椤?/span>ADG∽△EBG,從而求得AG的長,則根據(jù)GH=AHAG就得到了線段GH的長度.
解:(1)證明:∵ABCD是矩形,且AD∥BC,
∴△ADG∽△EBG.
∴ .
又∵△AGF∽△EGD,
∴ .
∴ .
∴DG2=FG·BG.
(2)∵ACED為平行四邊形,AE,CD相交于點(diǎn)H,
∴DH=DC=AB=,AE=13.
∴在直角三角形ADH中,
∴AH=
又∵△ADG∽△EBG,
∴ .
∴AG=GE=×AE=×13=.
∴GH=AHAG=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為直徑,是上一點(diǎn),于點(diǎn),弦與交于點(diǎn).過點(diǎn)作的切線交的延長線于點(diǎn),過點(diǎn)作的切線交的延長線于點(diǎn).
(1)求證:為等腰三角形;
(2)若,的半徑為3,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,對稱軸為的拋物線與x軸交于點(diǎn)與y軸交于點(diǎn)B,頂點(diǎn)為C.
求拋物線的解析式;
求的面積;
若點(diǎn)P在x軸上,將線段BP繞著點(diǎn)P逆時(shí)針旋轉(zhuǎn)得到PD,點(diǎn)D是否會(huì)落在拋物線上?如果會(huì),求出點(diǎn)P的坐標(biāo);若果不會(huì),說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD⊥AG,CE⊥AF,BD、CE分別是∠ABC和∠ACB的角平分線,若BF=3,ED=2,GC=5,則△ABC的周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖1,拋物線y=﹣x2﹣x+3與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,點(diǎn)D的坐標(biāo)是(0,﹣1),連接BC、AC
(1)求出直線AD的解析式;
(2)如圖2,若在直線AC上方的拋物線上有一點(diǎn)F,當(dāng)△ADF的面積最大時(shí),有一線段MN=(點(diǎn)M在點(diǎn)N的左側(cè))在直線BD上移動(dòng),首尾順次連接點(diǎn)A、M、N、F構(gòu)成四邊形AMNF,請求出四邊形AMNF的周長最小時(shí)點(diǎn)N的橫坐標(biāo);
(3)如圖3,將△DBC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)α°(0<α°<180°),記旋轉(zhuǎn)中的△DBC為△DB′C′,若直線B′C′與直線AC交于點(diǎn)P,直線B′C′與直線DC交于點(diǎn)Q,當(dāng)△CPQ是等腰三角形時(shí),求CP的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(9分)某中學(xué)學(xué)生為了解該校學(xué)生喜歡球類活動(dòng)的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查(要求每位學(xué)生只能填寫一種自己喜歡的球類),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計(jì)圖.
請根據(jù)圖中提供的信息,解答下面的問題:
(1)參加調(diào)查的學(xué)生共有 人,在扇形圖中,表示“其他球類”的扇形的圓心角為 度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有2000名學(xué)生,則估計(jì)喜歡“籃球”的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)C為線段AB的中點(diǎn),四邊形BCDE是以BC為一邊的正方形.以B為圓心,BD長為半徑的⊙B與AB相交于F點(diǎn),延長EB交⊙B于G點(diǎn),連接DG交于AB于Q點(diǎn),連接AD.
求證:(1)AD是⊙B的切線;(2)AD=AQ;(3)BC2=CFEG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,OA=6,OC=4,F是AB上的一個(gè)動(dòng)點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)的圖象與BC邊交于點(diǎn)E.
(1)當(dāng)F為AB的中點(diǎn)時(shí),求該函數(shù)的解析式;
(2)當(dāng)k為何值時(shí),△EFA的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BE是⊙O的直徑,點(diǎn)A和點(diǎn)D是⊙O上的兩點(diǎn),過點(diǎn)A作⊙O的切線交BE延長線于點(diǎn)C
(I)若∠ADE=25°,求∠C的度數(shù)
(II)若AB=AC,求∠D的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com