【題目】如圖1,已知AB∥CD,∠B=30°,∠D=120°;
(1)若∠E=60°,則∠F=;
(2)請(qǐng)?zhí)剿鳌螮與∠F之間滿足的數(shù)量關(guān)系?說明理由;
(3)如圖2,已知EP平分∠BEF,F(xiàn)G平分∠EFD,反向延長FG交EP于點(diǎn)P,求∠P的度數(shù).
【答案】
(1)90°
(2)解:如圖1,分別過點(diǎn)E,F(xiàn)作EM∥AB,F(xiàn)N∥AB,
∴EM∥AB∥FN,
∴∠B=∠BEM=30°,∠MEF=∠EFN,
又∵AB∥CD,AB∥FN,
∴CD∥FN,
∴∠D+∠DFN=180°,
又∵∠D=120°,
∴∠DFN=60°,
∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,
∴∠EFD=∠MEF+60°,
∴∠EFD=∠BEF+30°
(3)解:如圖2,過點(diǎn)F作FH∥EP,
由(2)知,∠EFD=∠BEF+30°,
設(shè)∠BEF=2x°,則∠EFD=(2x+30)°,
∵EP平分∠BEF,GF平分∠EFD,
∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°,
∵FH∥EP,
∴∠PEF=∠EFH=x°,∠P=∠HFG,
∵∠HFG=∠EFG﹣∠EFH=15°,
∴∠P=15°
【解析】解:(1)如圖1,分別過點(diǎn)E,F(xiàn)作EM∥AB,F(xiàn)N∥AB, ∴EM∥AB∥FN,
∴∠B=∠BEM=30°,∠MEF=∠EFN,
又∵AB∥CD,AB∥FN,
∴CD∥FN,
∴∠D+∠DFN=180°,
又∵∠D=120°,
∴∠DFN=60°,
∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,
∴∠EFD=∠MEF+60°
∴∠EFD=∠BEF+30°=90°;
所以答案是:90°;
【考點(diǎn)精析】掌握平行線的性質(zhì)是解答本題的根本,需要知道兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電腦公司銷售部為了定制下個(gè)月的銷售計(jì)劃,對(duì)20位銷售員本月的銷售量進(jìn)行了統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )
A.19,20,14 B.19,20,20 C.18.4,20,20 D.18.4,25,20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)共有1800名初三學(xué)生,為解決這些學(xué)生的體質(zhì)健康狀況,開學(xué)之初隨機(jī)選取部分學(xué)生進(jìn)行體育測(cè)試,以下是根據(jù)測(cè)試成績繪制的統(tǒng)計(jì)圖表的一部分.
根據(jù)以上信息,解答下列問題:(1)本次測(cè)試學(xué)生體質(zhì)健康成績?yōu)榱己玫挠衉________人,達(dá)到優(yōu)秀的人數(shù)占本次測(cè)試人數(shù)的百分比為____%.
(2)本次測(cè)試學(xué)生人數(shù)為_________人,其中,體質(zhì)健康成績?yōu)榧案竦挠衉_______人,不及格的人數(shù)占本次測(cè)試總?cè)藬?shù)的百分比是__________%.
(3)試估計(jì)該地區(qū)初三學(xué)生開學(xué)之初體質(zhì)健康成績達(dá)到良好及以上等級(jí)的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】看圖填空,并在括號(hào)內(nèi)注明理由依據(jù), 解:∵∠1=30°,∠2=30°
∴∠1=∠2
∴∥()
又AC⊥AE(已知)
∴∠EAC=90°
∴∠EAB=∠EAC+∠1=120°
同理:∠FBG=∠FBD+∠2=°.
∴∠EAB=∠FBG().
∴∥(同位角相等,兩直線平行)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形ABC中,D是AB上一點(diǎn),E是AC上一點(diǎn),∠ADE=60°,∠B=60°,∠AED=40°;
(1)求證:DE∥BC;
(2)求∠C的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知EF∥GH,A、D為GH上的兩點(diǎn),M、B為EF上的兩點(diǎn),延長AM于點(diǎn)C,AB平分∠DAC,直線DB平分∠FBC,若∠ACB=100°,則∠DBA的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】□ABCD中,點(diǎn)P在對(duì)角線BD上(不與點(diǎn)B , D重合),添加一個(gè)條件,使得△BCD與△ADP相似,這個(gè)條件可以是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com