【題目】小明想了解周圍的人是否具有節(jié)水意識,于是他設(shè)計了一份簡單的調(diào)查問卷,并到小區(qū)里隨機調(diào)查了40人,他將部分調(diào)查結(jié)果制成了統(tǒng)計圖.

小明的調(diào)查問卷:

調(diào)查問卷

年齡:________

1)你在刷牙時會一直開著水龍頭嗎?

A.經(jīng)常這樣 B.有時這料 C.從不這樣

2)你會將用過的水另作他用嗎?用洗衣服的水拖地、沖廁所等.

A.經(jīng)常這樣 B.有時這料 C.從不這樣

小明繪制的統(tǒng)計圖:

問題1中各年齡段選擇從不這樣的情況 問題1中各年齡段選擇經(jīng)常這樣的情況

1)在小明調(diào)查的40人中,各年齡段分別有多少人接受了調(diào)查?

2)通過小明的調(diào)查數(shù)據(jù),你認(rèn)為哪個年齡段的人最具有節(jié)水意識?

3)為了倡導(dǎo)你身邊的人節(jié)約用水,你有什么建議?

【答案】130歲以下有6人,3045歲有24人,45歲以上有10;245歲以上的人群最具有節(jié)水意識;3)答案不唯一,如:平時洗手時把水開小一點等.

【解析】

1)小明調(diào)查了一個45歲的人,在調(diào)查中得知在刷牙時從不開著水龍頭,從而得出選項;

2)根據(jù)條形統(tǒng)計圖給出的數(shù)據(jù)得出“從不這樣”和“經(jīng)常這樣”的各年齡段占的百分比,再進行比較即可得出哪個年齡段的人最具有節(jié)水意識;

3)答案不唯一,如洗手時把水龍頭開的小一點,把洗菜水二次利用等.

1,,

答,30歲以下有6人,3045歲有24人,45歲以上有10.

2)對于問題1中選擇“從不這樣”的人具有節(jié)水意識,其中

30歲以下的人占

30歲至45歲的人占,

45歲以上的人占.

對于問題2中選擇”經(jīng)常選樣“的人具有節(jié)水意識,其中30歲以下的人占,

30歲至45歲的人占,45歲以上的人占.

綜上,45歲以上的人群最具有節(jié)水意識.

3)答案不唯一,如:平時洗手時把水開小一點等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師是我區(qū)IDJP課題研究的主要成員之一,一天他在視頻微課中提出了以下問題:如圖,AB,CD為圓形紙片中兩條互相垂直的直徑,將圓形紙片沿EF折疊,使B與圓心M重合,折痕EFAB相交于N連結(jié)AE,AF.李老師提出兩個猜想和一個問題,請你證明或解答出來:

①四邊形MEBF是菱形;

②△AEF為等邊三角形;

③求SAEFS

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全區(qū)5000名初中畢業(yè)生的體重情況,隨機抽測了200名學(xué)生的體重,頻率分布如圖所示(每小組數(shù)據(jù)可含最小值,不含最大值),其中從左至右前四個小長方形的高依次為0.02、0.030.04、0.05,由此可估計全區(qū)初中畢業(yè)生的體重不小于60千克的學(xué)生人數(shù)約為___人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,,,點是邊上一個動點(不與重合),以點為圓心,為半徑作與射線交于點;以點為圓心,為半徑作,設(shè)

1)如圖,當(dāng)點與點重合時,求的值;

2)當(dāng)點在線段上,如果的另一個交點在線段上時,設(shè),試求之間的函數(shù)解析式,并寫出的取值范圍;

3)在點的運動的過程中,如果與線段只有一個公共點,請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,則巡邏船從出發(fā)到成功攔截捕魚船所用的時間是( 。

A. 1小時 B. 2小時 C. 3小時 D. 4小時

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,對角線AC、BD相交于點OBD2AD,EF、G分別是OC、ODAB的中點,下列結(jié)論:①BEAC②EGEF;EFG≌△GBE④EA平分∠GEF;四邊形BEFG是菱形.其中正確的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D

1)求拋物線及直線AC的函數(shù)關(guān)系式;

2)若P是拋物線上位于直線AC上方的一個動點,求APC的面積的最大值及此時點P的坐標(biāo);

3)在對稱軸上是否存在一點M,使ANM的周長最。舸嬖冢埱蟪M點的坐標(biāo)和ANM周長的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在梯形ABCD中,ADBC,AB=BC,DCBC,且AD=1DC=3,點P為邊AB上一動點,以P為圓心,BP為半徑的圓交邊BC于點Q

(1)AB的長;

(2)當(dāng)BQ的長為時,請通過計算說明圓P與直線DC的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

同步練習(xí)冊答案