【題目】解不等式組 把它的解集表示在數(shù)軸上,并求出不等式組的非負整數(shù)解.
【答案】解:解①得x≥﹣ , 解②得x<3,
則不等式組的解集是﹣ ≤x<3.
則非負整數(shù)解是0,1,2
【解析】首先解每個不等式,兩個不等式的解集的公共部分就是不等式組的解集,然后確定非負整數(shù)解即可.
【考點精析】通過靈活運用不等式的解集在數(shù)軸上的表示和一元一次不等式組的解法,掌握不等式的解集可以在數(shù)軸上表示,分三步進行:①畫數(shù)軸②定界點③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應記住下面的規(guī)律:大于向右畫,小于向左畫,等于用實心圓點,不等于用空心圓圈;解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】已知點P的坐標為(2-a,3a+6),且點P到兩坐標軸的距離相等,則點P的坐標是( )
A. (6,-6) B. (1,-1) C. (3,3) D. (6,-6)或(3,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個三角形是通過平移得到的,下列說法錯誤的是( )
A. 平移過程中,兩三角形周長不變
B. 平移過程中,兩三角形面積不變
C. 平移過程中,兩三角形的對應線段一定相等
D. 平移過程中,兩三角形的對應邊必平行
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是一個三棱柱包裝盒,它的底面是邊長為10cm的正三角形,三個側(cè)面都是矩形.現(xiàn)將寬為15cm的彩色矩形紙帶AMCN裁剪成一個平行四邊形ABCD(如圖2),然后用這條平行四邊形紙帶按如圖3的方式把這個三棱柱包裝盒的側(cè)面進行包貼(要求包貼時沒有重疊部分),紙帶在側(cè)面纏繞三圈,正好將這個三棱柱包裝盒的側(cè)面全部包貼滿.在圖3中,將三棱柱沿過點A的側(cè)棱剪開,得到如圖4的側(cè)面展開圖.為了得到裁剪的角度,我們可以根據(jù)展開圖拼接出符合條件的平行四邊形進行研究.
(1)請在圖4中畫出拼接后符合條件的平行四邊形;
(2)請在圖2中,計算裁剪的角度(即∠ABM的度數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】①一個多邊形的內(nèi)角和等于它的外角和的3倍,則它是幾邊形?
②某學校想用地磚鋪地,學校已準備了一批完全相同的正n邊形[n為(1)中的所求值],如果單獨用這種地磚能密鋪嗎?
③如果不能,請你自己只選用一種同(2)邊長相同的正方形地磚搭配能密鋪嗎?如果能,請你畫出一片密鋪的示意圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標;
(2)設頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點M、N,使得四邊形MNFE的周長最小?如果存在,求出周長的最小值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】書店舉行購書優(yōu)惠活動:
①一次性購書不超過100元,不享受打折優(yōu)惠;
②一次性購書超過100元但不超過200元一律打九折;
③一次性購書200元一律打七折.
小麗在這次活動中,兩次購書總共付款229.4元,第二次購書原價是第一次購書原價的3倍,那么小麗這兩次購書原價的總和是 元.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△A′B′C′關(guān)于直線MN對稱,P為MN上任意一點,下列說法不正確的是( 。
A.AP=A′P
B.MN垂直平分AA′,CC′
C.這兩個三角形的面積相等
D.直線AB、A′B′的交點不一定在MN上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com