1 |
2 |
|
|
|
科目:初中數(shù)學 來源: 題型:
在課外小組活動時,小偉拿來一道題(原問題)和小熊、小強交流.
原問題:如圖1,已知△ABC,∠ACB=90° , ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點F. 探究線段DF與EF的數(shù)量關系.小偉同學的思路是:過點D作DG⊥AB于G,構造全等三角形,通過推理使問題得解.小熊同學說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強同學經(jīng)過合情推理,提出一個猜想,我們可以把問題推廣到一般情況.請你參考小慧同學的思路,探究并解決這三位同學提出的問題:
1.寫出原問題中DF與EF的數(shù)量關系
2.如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結論是否發(fā)生變化?請寫出你的猜想并加以證明;
3.如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中
得到的結論是否發(fā)生變化?請寫出你的猜想并加以證明
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆四川樂山市中區(qū)中考模擬數(shù)學試卷(帶解析) 題型:解答題
在課外小組活動時,小偉拿來一道題(原問題)和小熊、小強交流.
原問題:如圖1,已知△ABC, ∠ACB=90°, ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點F. 探究線段DF與EF的數(shù)量關系.小偉同學的思路是:過點D作DG⊥AB于G,構造全等三角形,通過推理使問題得解.小熊同學說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強同學經(jīng)過合情推理,提出一個猜想,我們可以把問題推廣到一般情況.請你參考小慧同學的思路,探究并解決這三位同學提出的問題:
【小題1】寫出原問題中DF與EF的數(shù)量關系
【小題2】如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結論是否發(fā)生變化?請寫出你的猜想并加以證明;
【小題3】如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中
得到的結論是否發(fā)生變化?請寫出你的猜想并加以證明
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年四川樂山市區(qū)中考模擬數(shù)學試卷(解析版) 題型:解答題
在課外小組活動時,小偉拿來一道題(原問題)和小熊、小強交流.
原問題:如圖1,已知△ABC, ∠ACB=90° , ∠ABC=45°,分別以AB、BC為邊向外作△ABD與△BCE, 且DA=DB, EB=EC,∠ADB=∠BEC=90°,連接DE交AB于點F. 探究線段DF與EF的數(shù)量關系.小偉同學的思路是:過點D作DG⊥AB于G,構造全等三角形,通過推理使問題得解.小熊同學說:我做過一道類似的題目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小強同學經(jīng)過合情推理,提出一個猜想,我們可以把問題推廣到一般情況.請你參考小慧同學的思路,探究并解決這三位同學提出的問題:
1.寫出原問題中DF與EF的數(shù)量關系
2.如圖2,若∠ABC=30°,∠ADB=∠BEC=60°,原問題中的其他條件不變,你在(1)中得到的結論是否發(fā)生變化?請寫出你的猜想并加以證明;
3.如圖3,若∠ADB=∠BEC=2∠ABC,原問題中的其他條件不變,你在(1)中
得到的結論是否發(fā)生變化?請寫出你的猜想并加以證明
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com