【題目】如圖,已知在△ABC中,AB=AC=10cm,BC=8cm,DAB中點(diǎn),設(shè)點(diǎn)P在線段BC上以3cm/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

(1)若Q點(diǎn)運(yùn)動(dòng)的速度與P點(diǎn)相同,且點(diǎn)P,Q同時(shí)出發(fā),經(jīng)過1秒鐘后△BPD△CQP是否全等,并說明理由;

(2)若點(diǎn)P,Q同時(shí)出發(fā),但運(yùn)動(dòng)的速度不相同,當(dāng)Q點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能在運(yùn)動(dòng)過程中有△BPD△CQP全等?

(3)若點(diǎn)Q以(2)中的速度從點(diǎn)C出發(fā),點(diǎn)P以原來的速度從點(diǎn)B同時(shí)出發(fā),都是逆時(shí)針沿△ABC的三邊上運(yùn)動(dòng),經(jīng)過多少時(shí)間點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上相遇?

【答案】(1)詳見解析;(2)cm/秒;(3)秒在AB邊相遇.

【解析】

(1)求出BD,CP,根據(jù)全等三角形的判定即可,

(2)由全等推出時(shí)間t,在利用CQ=BD求出Q的速度即可,

(3)求出Q的運(yùn)動(dòng)路程,根據(jù)△ABC的三邊長(zhǎng)度即可確定Q的位置.

(1)解:∵t=1秒,∴BP=CQ=3×1=3cm,

∵AB=10cm,點(diǎn)DAB的中點(diǎn),∴BD=5cm.

∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.

∵AB=AC,∴∠B=∠C,

△BPD△CQP中,

∴△BPD≌△CQP(SAS).

(2)解:∵vP≠vQ

∴BP≠CQ,

∵△BPD≌△CPQ,∠B=∠C,則BP=PC=4cm,CQ=BD=5cm,

點(diǎn)P,點(diǎn)Q運(yùn)動(dòng)的時(shí)間t= 秒,∴vQ= cm/秒;

(3)設(shè)經(jīng)過x秒后點(diǎn)P與點(diǎn)Q第一次相遇,

由題意,得 x=3x+2×10,解得x=

點(diǎn)P共運(yùn)動(dòng)了×3=80cm.∴80=56+24=2×28+24,∴點(diǎn)P、點(diǎn)QAB邊上相遇,

經(jīng)過秒點(diǎn)P與點(diǎn)Q第一次在邊AB上相遇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABBC,ABDC,AB,BC,CD分別為2,2,22,則∠BAD的度數(shù)等于(  )

A. 120° B. 135° C. 150° D. 以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在正方形ABCD中,點(diǎn)E,F(xiàn)分別是邊BC,AB上的點(diǎn),且CE=BF,連接DE,過點(diǎn)E作EGDE,使EG=DE,連接FG,F(xiàn)C.

(1)請(qǐng)判斷:FGCE的數(shù)量關(guān)系是__________,位置關(guān)系是__________;

(2)如圖2,若點(diǎn)E、F分別是CBBA延長(zhǎng)線上的點(diǎn),其它條件不變,(1)中結(jié)論是否仍然成立?請(qǐng)出判斷判斷并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將九年級(jí)部分男生擲實(shí)心球的成績(jī)進(jìn)行整理,分成5個(gè)小組(x表示成績(jī),單位:米).A組:5.25≤x<6.25;B組:6.25≤x<7.25;C組:7.25≤x<8.25;D組:8.25≤x<9.25;E組:9.25≤x<10.25,并繪制出扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(不完整).規(guī)定x≥6.25為合格,x≥9.25為優(yōu)秀.

(1)這部分男生有多少人?其中成績(jī)合格的有多少人?
(2)這部分男生成績(jī)的中位數(shù)落在哪一組?扇形統(tǒng)計(jì)圖中D組對(duì)應(yīng)的圓心角是多少度?
(3)要從成績(jī)優(yōu)秀的學(xué)生中,隨機(jī)選出2人介紹經(jīng)驗(yàn),已知甲、乙兩位同學(xué)的成績(jī)均為優(yōu)秀,求他倆至少有1人被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示為一個(gè)污水凈化塔內(nèi)部,污水從上方入口進(jìn)入后流經(jīng)形如等腰直角三角形的凈化材料表面,流向如圖中箭頭所示,每一次水流流經(jīng)三角形兩腰的機(jī)會(huì)相同,經(jīng)過四層凈化后流入底部的5個(gè)出口中的一個(gè).下列判斷:①5個(gè)出口的出水量相同;②2號(hào)出口的出水量與4號(hào)出口的出水量相同;③1,23號(hào)出水口的出水量之比約為146;若凈化材料損耗速度與流經(jīng)其表面水的數(shù)量成正比,則更換最慢一個(gè)三角形材料使用的時(shí)間約為更換一個(gè)三角形材料使用時(shí)間的8倍,其中正確的判斷有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,若,,,下列結(jié)論:①;②;③;④互補(bǔ);⑤,其中正確的有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次期中考試中,甲、乙、丙、丁、戊五位同學(xué)的數(shù)學(xué)、英語成績(jī)等有關(guān)信息如下表所示(單位:分)

(1)求這五位同學(xué)在本次考試中數(shù)學(xué)成績(jī)的平均分和英語成績(jī)的標(biāo)準(zhǔn)差;

(2)為了比較不同學(xué)科考試成績(jī)的好與差,采用標(biāo)準(zhǔn)分是一個(gè)合理的選擇,標(biāo)準(zhǔn)分的計(jì)算公式:標(biāo)準(zhǔn)分=(個(gè)人成績(jī)-平均成績(jī)成績(jī)標(biāo)準(zhǔn)差.

從標(biāo)準(zhǔn)分看,標(biāo)準(zhǔn)分大的考試成績(jī)更好,請(qǐng)問甲同學(xué)在本次考試中,數(shù)學(xué)與英語哪個(gè)學(xué)科考得更好?

平均分

標(biāo)準(zhǔn)差

數(shù)學(xué)

71

72

69

68

70

英語

88

82

94

85

76

85

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】常用的分解因式的方法有提取公因式法、公式法,但有更多的多項(xiàng)式只用上述方法就無法分解,如x2﹣4y2﹣2x+4y,我們細(xì)心觀察這個(gè)式子就會(huì)發(fā)現(xiàn),前兩項(xiàng)符合平方差公式,后兩項(xiàng)可提取公因式,前后兩部分分別分解因式后會(huì)產(chǎn)生公因式,然后提取公因式就可以完成整個(gè)式子的分解因式了,過程為:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2),這種分解因式的方法叫分組分解法,利用這種方法解決下列問題.

(1)分解因式:x2+2xy+y2;

(2)分解因式:a2﹣9﹣2ab+b2

(3)ABC三邊a、b、c滿足a2﹣4bc+4ac﹣ab=0,判斷△ABC的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,AB4,角BAC的平分線交BC于點(diǎn)D,MAB邊中點(diǎn),NAD上的動(dòng)點(diǎn).

在圖上作出使得BN+MN的和最小時(shí)點(diǎn)N的位置,并說明理由.

求出BN+MN的最小值.(提示:RtABC中,∠C90°,則有AC2+BC2AB2成立)

查看答案和解析>>

同步練習(xí)冊(cè)答案