已知:如圖,P是⊙O外一點,PA切⊙O于A,AB是⊙O的直徑,PB交⊙O于C,若PA=2 cm,PC=1 cm,怎樣求出圖中陰影部分的面積S?寫出你的探求過程.

【答案】分析:PA切⊙O于A,AB是⊙O的直徑,根據(jù)切割線定理可以求出PB的長,三角形PBA的面積就可以求出,根據(jù)S=S△APB-S扇OAC-S△OBC即可求出陰影部分的面積.
解答:解:∵PA為切線,連接AC,
∴∠CAP=∠B,
∵AB是直徑,
∴∠ACB=∠ACP=90°
∴△PAC∽△PBA;
∴PA2=PC•PB;
∴PB=4;
∴AB=;
∴OA=
∴∠B=30°;
連接OC,則∠AOC=60°,
S扇形OAC==,S△OBC=;
∴S=S△APB-S扇OAC-S△OBC=cm2
點評:求不規(guī)則的圖形的面積,可以轉(zhuǎn)化為幾個規(guī)則圖形的面積的和或差來求.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

28、已知:如圖,E是△ABC的邊CA延長線上一點,F(xiàn)是AB上一點,D點在BC的延長線上.試證明∠1<∠2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2001•東城區(qū))已知:如圖,AB是半圓O的直徑,C為AB上一點,AC為半圓O′的直徑,BD切半圓O′于點D,CE⊥AB交半圓O于點F.
(1)求證:BD=BE;
(2)若兩圓半徑的比為3:2,試判斷∠EBD是直角、銳角還是鈍角?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2004•西藏)已知,如圖,P是⊙O外一點,PC切⊙O于點C,割線PO交⊙O于點B、A,且AC=PC.
(1)求證:△PBC≌AOC;
(2)如果PB=2,點M在⊙O的下半圈上運動(不與A、B重合),求當△ABM的面積最大時,AC•AM的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,P是∠AOB的角平分線OC上一點.PE⊥OA于E.以P點為圓心,PE長為半徑作⊙P.求證:⊙P與OB相切.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,AD是一條直線,∠1=65°,∠2=115°.求證:BE∥CF.

查看答案和解析>>

同步練習冊答案