【題目】等腰Rt△ACB,∠ACB=90°,AC=BC,點(diǎn)A、C分別在x軸、y軸的正半軸上.
(1)如圖1,求證:∠BCO=∠CAO
(2)如圖2,若OA=5,OC=2,求B點(diǎn)的坐標(biāo)
(3)如圖3,點(diǎn)C(0,3),Q、A兩點(diǎn)均在x軸上,且S△CQA=18.分別以AC、CQ為腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,連接MN交y軸于P點(diǎn),OP的長(zhǎng)度是否發(fā)生改變?若不變,求出OP的值;若變化,求OP的取值范圍.
【答案】(1)見(jiàn)解析(2)(﹣2,﹣3)(3)OP的長(zhǎng)度不會(huì)發(fā)生改變,9
【解析】
(1)根據(jù)同角的余角相等得出結(jié)論即可;
(2)先過(guò)點(diǎn)B作BD⊥y軸于D,再判定△CDB≌△AOC(AAS),求得BD=CO=2,CD=AO=5,進(jìn)而得出OD=5-2=3,即可得到B點(diǎn)的坐標(biāo);
(3)先過(guò)N作NH∥CM,交y軸于H,再△HCN≌△QAC(ASA),得出CH=AQ,HN=QC,然后根據(jù)點(diǎn)C(0,3),S△CQA=18,求得AQ=12,最后判定△PNH≌△PMC(AAS),得出,即可求得CP=3+6=9(定值).
解:(1)如圖1,
∵∠ACB=90°,∠AOC=90°,
∴∠BCO+∠ACO=90°=∠CAO+∠ACO,
∴∠BCO=∠CAO;
(2)如圖2,過(guò)點(diǎn)B作BD⊥y軸于D,則∠CDB=∠AOC=90°,
在△CDB和△AOC中,
,
∴△CDB≌△AOC(AAS),
∴BD=CO=2,CD=AO=5,
∴OD=5﹣2=3,
又∵點(diǎn)B在第三象限,
∴B(﹣2,﹣3);
(3)OP的長(zhǎng)度不會(huì)發(fā)生改變.
理由:如圖3,過(guò)N作NH∥CM,交y軸于H,則
∠CNH+∠MCN=180°,
∵等腰Rt△CAN、等腰Rt△QCM,
∴∠MCQ+∠ACN=180°,
∴∠ACQ+∠MCN=360°﹣180°=180°,
∴∠CNH=∠ACQ,
又∵∠HCN+∠ACO=90°=∠QAC+∠ACO,
∴∠HCN=∠QAC,
在△HCN和△QAC中,
,
∴△HCN≌△QAC(ASA),
∴CH=AQ,HN=QC,
∵QC=MC,
∴HN=CM,
∵點(diǎn)C(0,3),S△CQA=18,
∴×AQ×CO=18,即×AQ×3=18,
∴AQ=12,
∴CH=12,
∵NH∥CM,
∴∠PNH=∠PMC,
∴在△PNH和△PMC中,
,
∴△PNH≌△PMC(AAS),
∴CP=PH=CH=6,
又∵CO=3,
∴CP=3+6=9(定值),
即OP的長(zhǎng)度始終是9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD的對(duì)角線交于點(diǎn)O,且AB≠AD,過(guò)O作OE⊥BD交BD于點(diǎn)E.若△CDE的周長(zhǎng)為10,則平行四邊形ABCD的周長(zhǎng)為( )
A.10
B.16
C.18
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:用3輛A型車(chē)和2輛B型車(chē)載滿貨物一次可運(yùn)貨17噸;用2輛A型車(chē)和3輛B型車(chē)載滿貨物一次可運(yùn)貨l8噸,某物流公刊現(xiàn)有35噸貨物,計(jì)劃同時(shí)租用A型車(chē)a輛,B型車(chē)b輛,一次運(yùn)完,且恰好每輛車(chē)都載滿貨物.
根據(jù)以上信息,解答下列問(wèn)題:
(1)l輛A型車(chē)和l輛B型車(chē)都載滿貨物一次可分別運(yùn)貨多少?lài)崳?/span>
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車(chē)方案;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,,且滿足式子.
(1)求出的值;
(2)①在軸的正半軸上存在一點(diǎn),使的面積等于的面積的一半,求出點(diǎn)的坐標(biāo);
②在坐標(biāo)軸的其它位置是否存在點(diǎn),使的面積等于的面積的一半仍然成立,若存在,直接寫(xiě)出其他符合條件的點(diǎn)的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)作軸交軸于點(diǎn),點(diǎn)為線段延長(zhǎng)線上一動(dòng)點(diǎn),連接,平分,,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),求證:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)是4,的平分線交于點(diǎn),若點(diǎn)、分別是和上的動(dòng)點(diǎn),則的最小值是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,,,,,直線過(guò)點(diǎn),且與軸交于點(diǎn).
(1)求點(diǎn)、點(diǎn)的坐標(biāo);
(2)試說(shuō)明:;
(3)若點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),在軸上是否存在另一個(gè)點(diǎn),使以、、、為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,已知∠BAD=120°,∠EGF=60°, ∠EGF的頂點(diǎn)G在菱形對(duì)角線AC上運(yùn)動(dòng),角的兩邊分別交邊BC、CD于E、F.
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/6b570bc424f747a8be031e9f971720ec.png]
(1)如圖甲,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到與點(diǎn)A重合時(shí),求證:EC+CF=BC;
(2)知識(shí)探究:
①如圖乙,當(dāng)頂點(diǎn)G運(yùn)動(dòng)到AC的中點(diǎn)時(shí),請(qǐng)直接寫(xiě)出線段EC、CF與BC的數(shù)量關(guān)系(不需要寫(xiě)出證明過(guò)程);
②如圖丙,在頂點(diǎn)G運(yùn)動(dòng)的過(guò)程中,若,探究線段EC、CF與BC的數(shù)量關(guān)系;
(3)問(wèn)題解決:如圖丙,已知菱形的邊長(zhǎng)為8,BG=7,CF=,當(dāng)>2時(shí),求EC的長(zhǎng)度。
[Failed to download image : http://192.168.0.10:8086/QBM/2018/5/2/1936696631435264/1937624997150720/STEM/1671b8ec524a49feac7097357d4ff9a8.png]
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形ABC(記作△ABC)在8×8方格中,位置如圖所示,A(-3,1),B(-2,4).
(1)請(qǐng)你在方格中建立直角坐標(biāo)系,并寫(xiě)出C點(diǎn)的坐標(biāo);
(2)把△ABC向下平移1個(gè)單位長(zhǎng)度,再向右平移2個(gè)單位長(zhǎng)度,請(qǐng)你畫(huà)出平移后的△A1B1C1,若△ABC內(nèi)部一點(diǎn)P的坐標(biāo)為(a,b),則點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)是 .
(3)在x軸上存在一點(diǎn)D,使△DB1C1的面積等于3,求滿足條件的點(diǎn)D的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com