【題目】如圖,在置于平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)是內(nèi)切圓的圓心.將沿軸的正方向作無(wú)滑動(dòng)滾動(dòng),使它的三邊依次與軸重合,第一次滾動(dòng)后圓心為,第二次滾動(dòng)后圓心為,…,依此規(guī)律,第2020次滾動(dòng)后,內(nèi)切圓的圓心的坐標(biāo)是__________.
【答案】(8081,1)
【解析】
由勾股定理得出AB=,得出Rt△OAB內(nèi)切圓的半徑==1,因此P的坐標(biāo)為(1,1),由題意得出P3的坐標(biāo)(3+5+4+1,1),得出規(guī)律:每滾動(dòng)3次一個(gè)循環(huán),由2020÷3=673…1,即可得出結(jié)果.
解:∵點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)B的坐標(biāo)為(3,0),
∴OA=4,OB=3,
∴AB=
∴Rt△OAB內(nèi)切圓的半徑==1,
∴P的坐標(biāo)為(1,1),P2的坐標(biāo)為(3+5+4-1,1),即(11,1)
∵將Rt△OAB沿x軸的正方向作無(wú)滑動(dòng)滾動(dòng),使它的三邊依次與x軸重合,第一次滾動(dòng)后圓心為P1,第二次滾動(dòng)后圓心為P2,…,
設(shè)P1的橫坐標(biāo)為x,根據(jù)切線(xiàn)長(zhǎng)定理可得
5-(x-3)+3-(x-3)=4
解得:x=5
∴P1的坐標(biāo)為(3+2,1)即(5,1)
∴P3(3+5+4+1,1),即(13,1),
每滾動(dòng)3次一個(gè)循環(huán),
∵2020÷3=673…1,
∴第2020次滾動(dòng)后,Rt△OAB內(nèi)切圓的圓心P2020的橫坐標(biāo)是673×(3+5+4)+5,
即P2020的橫坐標(biāo)是8081,
∴P2020的坐標(biāo)是(8081,1);
故答案為:(8081,1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象相較于A(2,3),B(﹣3,n)兩點(diǎn).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)所給條件,請(qǐng)直接寫(xiě)出不等式kx+b>的解集;
(3)過(guò)點(diǎn)B作BC⊥x軸,垂足為C,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC=2,取BC邊中點(diǎn)E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作S1;取BE中點(diǎn)E1,作E1D1∥FB,E1F1∥EF,得到四邊形E1D1FF1,它的面積記作S2,照此規(guī)律作下去,則S1=_______,S2017=____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠要在規(guī)定時(shí)間內(nèi)搬運(yùn)1200噸化工原料.現(xiàn)有,兩種機(jī)器人可供選擇,已知型機(jī)器人比型機(jī)器人每小時(shí)多搬運(yùn)30噸型,機(jī)器人搬運(yùn)900噸所用的時(shí)間與型機(jī)器人搬運(yùn)600噸所用的時(shí)間相等.
(1)求兩種機(jī)器人每小時(shí)分別搬運(yùn)多少?lài)嵒ぴ希?/span>
(2)該工廠原計(jì)劃同時(shí)使用這兩種機(jī)器人搬運(yùn),工作一段時(shí)間后,型機(jī)器人又有了新的搬運(yùn)任務(wù)需離開(kāi),但必須保證這批化工原料在11小時(shí)內(nèi)全部搬運(yùn)完畢.問(wèn)型機(jī)器人至少工作幾個(gè)小時(shí),才能保證這批化工原料在規(guī)定的時(shí)間內(nèi)完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,CD是AB邊上的中線(xiàn),延長(zhǎng)AB到點(diǎn)E,使BE=AB,連接CE.求證:CD= CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代著名數(shù)學(xué)著作,書(shū)中記載:“今有圓材,埋在壁中,不知大小以鋸鋸之,深一寸,鋸道長(zhǎng)一尺,問(wèn)徑幾何?”用數(shù)學(xué)語(yǔ)言可表述為:“如圖,CD為⊙O的直徑,弦AB⊥DC于E,ED=1寸,AB=10寸,求直徑CD的長(zhǎng).”則CD=_______寸.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線(xiàn)上,C、E是⊙O上的兩點(diǎn),CE=CB,∠BCD=∠CAE,延長(zhǎng)AE交BC的延長(zhǎng)線(xiàn)于點(diǎn)F.
求證:(1)CD是⊙O的切線(xiàn);
(2)CE=CF;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖矩形COAB,點(diǎn)B(4,3),點(diǎn)H位于邊BC上.
直線(xiàn)l1:2x﹣y+3=0
直線(xiàn)l2:2x﹣y﹣3=0
(1)若點(diǎn)N為l2上第一象限的點(diǎn),△AHN為等腰Rt△,求N坐標(biāo).
(2)若把l1、l2上的點(diǎn)構(gòu)成的圖形稱(chēng)為圖形V.已知矩形AJHI的頂點(diǎn)J在圖形V上,I為平面系上的點(diǎn),且J(x,y),求x的范圍(寫(xiě)出過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某區(qū)規(guī)定學(xué)生每天戶(hù)外體育活動(dòng)時(shí)間不少于1小時(shí),為了解學(xué)生參加戶(hù)外體育活動(dòng)的情況,對(duì)部分學(xué)生每天參加戶(hù)外體育活動(dòng)的時(shí)間進(jìn)行了隨機(jī)抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖的統(tǒng)計(jì)圖表(不完整).請(qǐng)根據(jù)圖表中的信息,解答下列問(wèn)題:
(1)表中的a=_____,將頻數(shù)分布直方圖補(bǔ)全;
(2)該區(qū)8000名學(xué)生中,每天戶(hù)外體育活動(dòng)的時(shí)間不足1小時(shí)的學(xué)生大約有多少名?
(3)若從參加戶(hù)外體育活動(dòng)時(shí)間最長(zhǎng)的3名男生和1名女生中隨機(jī)抽取兩名,請(qǐng)用畫(huà)樹(shù)狀圖或列表法求恰好抽到1名男生和1名女生的概率.
組別 | 時(shí)間(小時(shí)) | 頻數(shù)(人數(shù)) | 頻率 |
A | 0≤t<0.5 | 20 | 0.05 |
B | 0.5≤t<1 | a | 0.3 |
C | l≤t<1.5 | 140 | 0.35 |
D | 1.5≤t<2 | 80 | 0.2 |
E | 2≤t<2.5 | 40 | 0.1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com