如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,OA=3,OC=4,P為直線AB上一動(dòng)點(diǎn),將直線OP繞點(diǎn)P逆時(shí)針?lè)较蛐D(zhuǎn)90°交直線BC于點(diǎn)Q.
(1)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)(不與A,B重合)時(shí),求證:OA•BQ=AP•BP;
(2)在(1)成立的條件下,設(shè)點(diǎn)P的橫坐標(biāo)為m,線段CQ的長(zhǎng)度為l,求出l關(guān)于m的函數(shù)解析式,并判斷l(xiāng)是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由;
(3)直線AB上是否存在點(diǎn)P,使△POQ為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)已知利用相似三角形的判定得到△AOP∽△BPQ,再根據(jù)相似三角形的對(duì)應(yīng)邊成比例即可得到OA•BQ=AP•BP;
(2)由第一問(wèn)可求得BQ的值,從而求得l=3-,
所以可得到當(dāng)m=2時(shí),l有最小值;
(3)因?yàn)椤鱌OQ是等腰三角形所以PO=PQ,根據(jù)等式PA2+AO2=PB2+BQ2可求得m的值,從而就可確定點(diǎn)P的坐標(biāo).
解答:(1)證明:∵PO⊥PQ,
∴∠APO+∠BPQ=90°,
在Rt△AOP中,∠APO+∠AOP=90°,
∴∠BPQ=∠AOP,
∴△OAP∽△PBQ,則
即OA•BQ=AP•BP.(3分)

(2)解:∵OA•BQ=AP•BP,即BQ=,
∴l(xiāng)=3-
∴當(dāng)m=2時(shí),l有最小值.(6分)

(3)解法一:
∵△POQ是等腰三角形
①若P在線段AB上,∠OPQ=90°
∴PO=PQ,又△OAP∽△PBQ,
∴△OAP≌△PBQ
∴PB=AO,即3=4-m,
∴m=1,即P點(diǎn)坐標(biāo)(1,3);(8分)
②若P在線段AB的延長(zhǎng)線上,PQ交CB的延長(zhǎng)線于Q,PO=PQ,
又∵△AOP∽△BPQ,
∴△AOP≌△BPQ,
∴AO=PB,即3=m-4,即P點(diǎn)的坐標(biāo)(7,3);
③當(dāng)P在線段BA的延長(zhǎng)線上時(shí),顯然不成立;
故存在P1(1,3),P2(7,3)使△POQ為等腰三角形;(10分)

解法二:
∵△POQ是等腰三角形
∴PO=PQ,
即PA2+AO2=PB2+BQ2(7分)
則m2+32=(4-m)2+(2(8分)
整理得m4-8m3+16m2-72m+63=0
m4-8m3+7m2+9m2-72m+63=0
m2(m2-8m+7)+9(m2-8m+7)=0
(m-1)(m-7)(m2+9)=0
∴m1=1,m2=7,m2=-9(舍去)
故存在P1(1,3),P2(7,3)使△POQ為等腰三角形.(10分)
點(diǎn)評(píng):此題考查學(xué)生對(duì)等腰三角形的性質(zhì),相似三角形的判定,矩形的性質(zhì)及二次函數(shù)等知識(shí)點(diǎn)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案