5、如圖所示.四邊形ABCF中,AB∥DF,∠1=∠2,AC=DF,F(xiàn)C<AD.
(1)求證:ADCF是等腰梯形;
(2)若△ADC的周長為16厘米(cm),AF=3厘米,AC-FC=3厘米,求四邊形ADCF的周長.
分析:(1)欲證ADCF是等腰梯形,歸結(jié)為證明AD∥CF,AF=DC,不要忘了還需證明AF不平行于DC.利用已知相等的要素,應(yīng)從全等三角形下手.
(2)計算等腰梯形的周長,顯然要注意利用AC-FC=3厘米的條件,才能將△ADC的周長過渡到梯形的周長.
解答:解:(1)∵AB∥DF
∴∠1=∠3
∵∠1=∠2
∴∠2=∠3
∴EA=ED
∵AC=DF
∴EC=EF
∴△EAD及△ECF均是等腰三角形
∵∠AED=∠CEF
∴∠3=∠4
∴AD∥CF
∵FC<AD
∵AC=DF,∠2=∠3,AD=AD
∴△ACD≌△DFA(SAS)
∴AF=DC
∵AD∥CF,F(xiàn)C<AD,AF=DC
∴四邊形ADCF是等腰梯形.
(2)∵△ADC的周長=AD+DC+AC=16(厘米),AF=3(厘米),F(xiàn)C=AC-3
∴四邊形ADCF的周長=AD+DC+CF+AF
=AD+DC+(AC-3)+AF
=(AD+DC+AC)-3+3
=16(厘米)
∴四邊形ADCF的周長為16厘米.
點評:此題主要考查學(xué)生對等腰梯形的判定,全等三角形的判定與性質(zhì)的理解及運用能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點H,G.
(1)觀察圖中有
2
對全等三角形;
(2)聰明的你如果還有時間,請在上圖中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請在下面的橫線上再寫出兩對與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長線的上一點,∠CBE=40°,則∠AOC等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點.
(1)當(dāng)AB∥CD而AD與BC不平行時,四邊形ABCD稱為
 
形,線段EF叫做其
 
,EF與AB+CD的數(shù)量關(guān)系為
 

(2)當(dāng)AB與CD不平行,AD與BC也不平行時,猜想EF與AB+CD的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點,連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新課標(biāo) 讀想練同步測試 七年級數(shù)學(xué)(下) 北師大版 題型:044

如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點,設(shè)∠CDP=α,∠CPD=β,試說明,無論點P在BC上如何移動,總有α+β=∠B.

查看答案和解析>>

同步練習(xí)冊答案