【題目】如圖是一塊直角三角形的綠地,量得直角邊BC6cm,AC8cm,現(xiàn)在要將原綠地擴(kuò)充后成等腰三角形,且擴(kuò)充的部分是以AC為直角邊的直角三角形,求擴(kuò)充后的等腰三角形綠地的周長.

【答案】擴(kuò)充后的等腰三角形綠地的周長為32m或(20+4m m

【解析】試題分析:根據(jù)題意畫出圖形,構(gòu)造出等腰三角形,根據(jù)等腰三角形及直角三角形的性質(zhì)利用勾股定理解答即可.

試題解析:在Rt△ABC中,∠ACB=90°,AC=8m,BC=6m,由勾股定理有:AB=10m,應(yīng)分以下三種情況:

①如圖1,

當(dāng)AB=AD=10m時,

∵AC⊥BD,

∴CD=CB=6m,

∴△ABD的周長=10+10+2×6=32(m).

②如圖2,

當(dāng)AB=BD=10m時,

∵BC=6m,

∴CD=10﹣6=4m,

AD= ==4m),

∴△ABD的周長=10+10+4=20+4m

③如圖3,

當(dāng)AB為底時,設(shè)AD=BD=x,則CD=x﹣6,

由勾股定理得:AD2=AC2+CD2=82+(x﹣6)2=x2 ,

解得x=

∴△ABD的周長為:AD+BD+AB=+ +10= m).

綜上所述,擴(kuò)充后的等腰三角形綠地的周長為:32m或(20+4m m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E(0,3),O(0,0),C(4,0)在⊙A上,BE是⊙A上的一條弦.則sin∠OBE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A、Dy軸正半軸上,點B、C分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-BDO.

1)求證:AC=BC

2)如圖2,點C的坐標(biāo)為(4,0),點EAC上一點,且∠DEA=DBO,求BC+EC的長;

3)如圖3,過DDFACF點,點HFC上一動點,點GOC上一動點,當(dāng)HFC上移動、點GOC上移動時,始終滿足∠GDH=GDO+FDH,試判斷FHGH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.

(圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠C=90°,BD平分∠CBAAC于點DDEABE.若△ADE的周長為8cm,AB_____ cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F。

1求證:ABE≌△CAD;2BFD的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,每個小正方形的邊長均為1.求四邊形ABCD的面積和周長(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,一次函數(shù)y=﹣x+b與反比例函數(shù)y= (k≠0)的圖象交于點A(1,3),B(m,1),與x軸交于點D,直線OA與反比例函數(shù)y= (k≠0)的圖象的另一支交于點C,過點B作直線l垂直于x軸,點E是點D關(guān)于直線l的對稱點.

(1)k=;
(2)判斷點B,E,C是否在同一條直線上,并說明理由;
(3)如圖2,已知點F在x軸正半軸上,OF= ,點P是反比例函數(shù)y= (k≠0)的圖象位于第一象限部分上的點(點P在點A的上方),∠ABP=∠EBF,則點P的坐標(biāo)為().

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F(xiàn)是BC的中點,過D分別作DP⊥AF于P,DQ⊥CE于Q,則DP:DQ等于( )

A.3:4
B. :2
C. :2
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板如圖1擺放在直線MN上,在三角板OAB和三角板OCD中,,,

保持三角板OCD不動,將三角板OAB繞點O以每秒的速度逆時針旋轉(zhuǎn),旋轉(zhuǎn)時間為t秒.

當(dāng)______秒時,OB平分此時______;

當(dāng)三角板OAB旋轉(zhuǎn)至圖2的位置,此時有怎樣的數(shù)量關(guān)系?請說明理由;

如圖3,若在三角板OAB開始旋轉(zhuǎn)的同時,另一個三角板OCD也繞點O以每秒的速度逆時針旋轉(zhuǎn),當(dāng)OB旋轉(zhuǎn)至射線OM上時同時停止.

當(dāng)t為何值時,OB平分?

直接寫出在旋轉(zhuǎn)過程中,之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案