(2010•清遠)如圖,DE是△ABC的中位線,若△ADE的周長是18,則△ABC的周長是   
【答案】分析:根據三角形的中位線定理,易證明△ABC的周長是△ADE的周長的2倍.
解答:解:∵DE是△ABC的中位線,
∴AD=AB,AE=AC,DE=BC.
∴△ABC的周長是△ADE的周長的2倍,
即△ABC的周長=2×18=36.
故答案是36.
點評:此題考查了三角形的中位線概念以及三角形的中位線定理.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•清遠)如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經過B、C兩點,點A是拋物線與x軸的另一個交點.
(1)求拋物線的函數(shù)表達式;
(2)若點P在線段BC上,且S△PAC=S△PAB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省清遠市中考數(shù)學試卷(解析版) 題型:解答題

(2010•清遠)如圖,直線y=x-3于x軸、y軸分別交于B、C;兩點,拋物線y=x2+bx+c同時經過B、C兩點,點A是拋物線與x軸的另一個交點.
(1)求拋物線的函數(shù)表達式;
(2)若點P在線段BC上,且S△PAC=S△PAB,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(15)(解析版) 題型:解答題

(2010•清遠)如下圖,在⊙O中,點P在直徑AB上運動,但與A、B兩點不重合,過點P作弦CE⊥AB,在上任取一點D,直線CD與直線AB交于點F,弦DE交直線AB于點M,連接CM.
(1)如圖1,當點P運動到與O點重合時,求∠FDM的度數(shù).
(2)如圖2、圖3,當點P運動到與O點不重合時,求證:FM•OB=DF•MC.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(01)(解析版) 題型:選擇題

(2010•清遠)如圖,在平行四邊形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,則AD的長為( )

A.4cm
B.5cm
C.6cm
D.8cm

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣東省清遠市中考數(shù)學試卷(解析版) 題型:解答題

(2010•清遠)如圖,在菱形ABCD中,∠A=60°,E、F分別是AD、CD上的兩點,且AE=DF.
求證:△ABE≌△DBF.

查看答案和解析>>

同步練習冊答案