【題目】如圖,在平面直角坐標(biāo)系中,直線y=-x+b分別與x軸、y軸交于點(diǎn)A、B,且點(diǎn)A的坐標(biāo)為(4,0),四邊形ABCD是正方形.
(1)填空:b= ;
(2)求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M是線段AB上的一個(gè)動點(diǎn)(點(diǎn)A、B除外),試探索在x上方是否存在另一個(gè)點(diǎn)N,使得以O(shè)、B、M、N為頂點(diǎn)的四邊形是菱形?若不存在,請說明理由;若存在,請求出點(diǎn)N的坐標(biāo).
【答案】(1)3;(2) 點(diǎn)N的坐標(biāo)為(-2,)、(,)..
【解析】
試題分析:(1)把(4,0)代入y=-x+b即可求得b的值;
(2)過點(diǎn)D作DE⊥x軸于點(diǎn)E,證明△OAB≌△EDA,即可求得AE和DE的長,則D的坐標(biāo)即可求得;
(3)分當(dāng)OM=MB=BN=NO時(shí);當(dāng)OB=BN=NM=MO=3時(shí)兩種情況進(jìn)行討論.
試題解析:(1)把(4,0)代入y=-x+b,得:-3+b=0,解得:b=3,
(2)如圖1,過點(diǎn)D作DE⊥x軸于點(diǎn)E,
∵正方形ABCD中,∠BAD=90°,
∴∠1+∠2=90°,
又∵直角△OAB中,∠1+∠2=90°,
∴∠1=∠3,
在△OAB和△EDA中,
,
∴△OAB≌△EDA,
∴AE=OB=3,DE=OA=4,
∴OE=4+3=7,
∴點(diǎn)D的坐標(biāo)為(7,4);
(3)存在.
①如圖2,當(dāng)OM=MB=BN=NO時(shí),四邊形OMBN為菱形.
則MN在OB的中垂線上,則M的縱坐標(biāo)是,
把y=代入y=-x+4中,得x=2,即M的坐標(biāo)是(2,),
則點(diǎn)N的坐標(biāo)為(-2,).
②如圖3,當(dāng)OB=BN=NM=MO=3時(shí),四邊形BOMN為菱形.
∵ON⊥BM,
∴ON的解析式是y=x.
根據(jù)題意得:
,解得:.
則點(diǎn)N的坐標(biāo)為(,).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】命題“垂直于同一條直線的兩條直線互相平行”的條件是( )
A. 垂直 B. 兩條直線 C. 同一條直線 D. 兩條直線垂直于同一條直線
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,正確的有( )
①無限小數(shù)都是有理數(shù);②不循環(huán)小數(shù)不是有理數(shù);
③不是有理數(shù)的數(shù)都是無限小數(shù);④0是有理數(shù)
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn),得到△BA′E′,連接DA′.若∠ADC=60°,∠ADA′=50°,則∠DA′E′的大小為( )
A.130° B.150° C.160° D.170°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中一小島上有一個(gè)觀測點(diǎn)A,某天上午9:00觀測到某漁船在觀測點(diǎn)A的西南方向上的B處跟蹤魚群由南向北勻速航行.當(dāng)天上午9:30觀測到該漁船在觀測點(diǎn)A的北偏西60°方向上的C處.若該漁船的速度為每小時(shí)30海里,在此航行過程中,問該漁船從B處開始航行多少小時(shí),離觀測點(diǎn)A的距離最近?(計(jì)算結(jié)果用根號表示,不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F(xiàn)是四邊形ABCD對角線AC上的兩點(diǎn),AD∥BC,DF∥BE,AE=CF.
求證:(1)△AFD≌△CEB;(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com