【題目】已知:在平行四邊形ABCD中,ABBC=32.

(1)根據(jù)條件畫圖:作∠BCD的平分線,交邊AB于點(diǎn)E,取線段BE的中點(diǎn)F,連接DFCE于點(diǎn)G.

(2)設(shè),那么向量=______.(用向量、表示),并在圖中畫出向量在向量方向上的分向量.

【答案】(1)見解析;(2) =,畫圖見解析.

【解析】

1)首先作∠BCD的平分線,然后作BE的垂直平分線即可;

2)首先判定△GEF∽△GCD,然后根據(jù)ABBC=32,得出,進(jìn)而得出,最后根據(jù)向量的運(yùn)算,即可得出,即可畫出分向量.

1)根據(jù)已知條件,作圖如下:

2)∵CE為∠BCD的平分線,

∠BCE=∠DCE

∵AB∥CD

∴∠DCE=∠BEC,△GEF∽GCD

又∵ABBC=32

又∵

又∵,

同理可得,

在向量方向上的分向量,如圖所示:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線ymx2+2mx3m0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,該拋物線的頂點(diǎn)D的縱坐標(biāo)是﹣4

1)求點(diǎn)A、B的坐標(biāo);

2)設(shè)直線與直線AC關(guān)于該拋物線的對(duì)稱軸對(duì)稱,求直線的表達(dá)式;

3)平行于x軸的直線b與拋物線交于點(diǎn)Mx1,y1)、Nx2,y2),與直線交于點(diǎn)Px3,y3).若x1x3x2,結(jié)合函數(shù)圖象,求x1+x2+x3的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,以AC為直徑的OAB邊交于點(diǎn)D,過點(diǎn)D的切線交BC于點(diǎn)E

(1)求證:EB=EC;

(2)當(dāng)ABC滿足什么條件時(shí),四邊形ODEC是正方形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為3正方形的頂點(diǎn)與原點(diǎn)重合,點(diǎn)軸,軸上。反比例函數(shù)的圖象交于點(diǎn),連接,.

1)求反比例函數(shù)的解析式;

2)過點(diǎn)軸的平行線,點(diǎn)在直線上運(yùn)動(dòng),點(diǎn)軸上運(yùn)動(dòng).

是以為直角頂點(diǎn)的等腰直角三角形,求的面積;

“①”中的為直角頂點(diǎn)的去掉,將問題改為是等腰直角三角形,的面積除了“①”中求得的結(jié)果外,還可以是______.(直接寫答案,不用寫步驟)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個(gè)三角形為勻稱三角形,這條中線為勻稱中線

1)如圖①,在RtABC中,∠C90°,ACBC,若RtABC勻稱三角形

①請(qǐng)判斷勻稱中線是哪條邊上的中線,

②求BCACAB的值.

2)如圖②,ABC是⊙O的內(nèi)接三角形,ABAC,∠BAC45°,SABC2,將ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°得到ADE,點(diǎn)B的對(duì)應(yīng)點(diǎn)為D,AD與⊙O交于點(diǎn)M,若ACD勻稱三角形,求CD的長,并判斷CM是否為ACD勻稱中線

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC10,BC16,點(diǎn)DBC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、點(diǎn)C重合).以D為頂點(diǎn)作∠ADE=∠B,射線DEAC邊于點(diǎn)E,過點(diǎn)AAFAD交射線DE于點(diǎn)F

1)求證:ABCEBDCD

2)當(dāng)DF平分∠ADC時(shí),求AE的長;

3)當(dāng)△AEF是等腰三角形時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E,點(diǎn)F是點(diǎn)E關(guān)于AB的對(duì)稱點(diǎn),連接AF、BF

1)求AEBE的長;

2)若將△ABF沿著射線BD方向平移,設(shè)平移的距離為m(平移距離指點(diǎn)B沿BD方向所經(jīng)過的線段長度).當(dāng)點(diǎn)F分別平移到線段AB、AD上時(shí),直接寫出相應(yīng)的m的值;

3)如圖,將△ABF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)一個(gè)角α(<α<180°),記旋轉(zhuǎn)中的△ABF△A′BF′,在旋轉(zhuǎn)過程中,設(shè)A′F′所在的直線與直線AD交于點(diǎn)P,與直線BD交于點(diǎn)Q.是否存在這樣的PQ兩點(diǎn),使△DPQ為等腰三角形?若存在,求出此時(shí)DQ的長;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個(gè)函數(shù)的圖象關(guān)于y軸對(duì)稱,我們就稱這個(gè)函數(shù)為偶函數(shù).

1)按照上述定義判斷下列函數(shù)中,_____是偶函數(shù).

y3x yx+1 y= yx2

2)若二次函數(shù)yx2+bx4是偶函數(shù),該函數(shù)圖象與x軸交于點(diǎn)A和點(diǎn)B,頂點(diǎn)為P,求△ABP的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(已知:如圖所示的一張矩形紙片ABCDAD>AB),將紙片折疊一次,使點(diǎn)A與點(diǎn)C重合,再展開,折痕EFAD邊于點(diǎn)E,交BC邊于點(diǎn)F,分別連結(jié)AFCE

1)求證:四邊形AFCE是菱形;

2)若AE=10cm,△ABF的面積為24cm2,求△ABF的周長;

3)在線段AC上是否存在一點(diǎn)P,使得2AE2=AC·AP?若存在,請(qǐng)說明點(diǎn)P的位置,并予以證明;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案